
Light-weight

Data Model

Patterns
-

[or “Patterns-D-Lite”]

[image: image26.wmf]effectivePeriod

nameDisplayString

Party

gender

Person

OrganisationUnit

effectivePeriod

personNameType

salutation

familyName

postNominal

PersonName

givenName

PersonGivenName

effectivePeriod

orgUnitNameType

orgUnitName

OrganisationUnitName

1

1..*

1

0..*

1

1..*

 Country Endeavours Pty Ltd
 “Creative Solutions for Difficult Problems”

Light-weight Data Model Patterns – “Patterns-D-Lite”
Table of Contents

11
Introduction

11.1
Purpose

11.2
A comment on data model patterns

11.3
Open use of this material

21.4
Cross-references to additional material

32
An introduction to the 9 pillars

32.1
9-Pillar Schematic

42.2
9-Pillar outline

53
Model notes

53.1
High-level, Conceptual, Logical and Physical models

53.2
Attribute details

53.3
Time dimension

53.4
Documenting the patterns

63.5
Modelling notation

73.6
Keys

73.7
Many-to-many associations

83.8
Typing of classes

83.9
Business rules

83.10
Case study examples

94
Pattern Group #1: Parties, Roles & their Agreements

94.1
Pattern: Party

94.1.1
Introduction to the pattern

94.1.2
Party and its subtypes as a foundation

114.1.3
Party names

124.1.4
Party addresses

144.1.5
Party identifiers

154.1.6
Relationships between parties

164.1.7
A consolidated view of Party

174.2
Pattern: Party Role

184.2.1
Concepts versus Implementation

184.2.2
Declarative roles versus Contextual roles

194.3
Pattern: Position

204.3.1
Positions and organisation structures

214.4
Pattern: Agreement

235
Pattern Group #2: Tasks, Events & assigned Resources

235.1
Event-Driven Architecture

245.2
Pattern: Event

265.3
Pattern: Task

285.4
Pattern: Resource

305.4.1
Assignment of Resources, Parties and Party Roles to Tasks

326
Pattern Group #3: Products (tangible goods, intangible services)

326.1
Pattern: Product

326.1.1
Introduction to the pattern

336.1.2
Goods and Services

357
Pattern Group #4: Off-the-shelf subject areas

367.1
Pattern: Location

377.2
Pattern: Document

397.3
Pattern: Account

408
Pattern Group #5: Utility patterns

418.1
Pattern: Classification

429
Relationships between the 9-pillar Patterns

4610
Dictionary of Definitions for the Entity Types

4610.1
Account

4710.1.1
Account / Account Payable

4710.1.2
Account / Account Receivable

4810.2
Account Participation

4910.3
Account Type

5010.4
Accounting Entry

5110.5
Accounting Transaction

5210.6
Accounting Transaction Item

5310.7
Accounting Transaction Type

5410.8
Address

5510.8.1
Address / Email Address

5510.8.2
Address / Phone Number

5610.8.3
Address / Physical Address

5710.8.4
Address / Postal Address

5810.9
Address Service

5910.10
Address Service Type

6010.11
Address Usage Type

6110.12
Agreement

6210.12.1
Agreement / Employment Contract

6310.13
Agreement Item

6410.14
Agreement Participation

6510.15
Agreement To Agreement Relationship

6610.16
Agreement To Agreement Relationship Type

6710.17
Agreement Type

6810.18
Calendar

6910.19
Classification Code

7010.19.1
Classification Code / Discrete Value Classification

7110.19.2
Classification Code / Range Classification

7210.20
Classification Code Hierarchy

7310.21
Classification Scheme

7410.22
Classification Scheme Allowable Hierarchy

7510.23
Document

7610.23.1
Document / Electronic Document

7610.23.1.1
Document / Electronic Document / Structured Electronic Document

7710.23.1.2
Document / Electronic Document / Unstructured Electronic Document

7710.23.2
Document / Physical Document

7810.24
Document Format

7910.25
Document To Document Relationship

8010.26
Document To Document Relationship Type

8110.27
Document Type

8210.28
Event

8310.28.1
Event / Communication Event

8310.28.2
Event / Safety Incident

8410.28.3
Event / Observation Event

8510.29
Event To Event Relationship

8610.30
Event To Event Relationship Type

8710.31
Event Type

8810.32
Geometry

9010.32.1
Geometry / Line

9010.32.2
Geometry / Point

9110.32.3
Geometry / Polygon

9210.33
Geospatial Explicit Proximity

9410.34
Geospatial Object

9510.34.1
Geospatial Object / Geopolitical Zone

9510.34.2
Geospatial Object / National Park

9610.35
Geospatial Object Type

9710.36
Goods Item

9710.37
Goods Type

9810.38
Object To Task Assignment

10010.39
Object Type To Task Assignment

10210.40
Organisation Name

10310.41
Party

10510.41.1
Party / Organisation

10610.41.2
Party / Person

10710.42
Party Identifier

10810.43
Party Role

11010.43.1
Party Role / Customer

11010.43.1
Role / Employee

11010.43.2
Role / Employer

11110.44
Party Role Type

11210.45
Party To Party Relationship

11310.46
Party To Party Relationship Type

11410.47
Party Type

11510.48
Person Given Name

11610.49
Person Name

11710.50
Position

11810.51
Position Assignment

11910.52
Position Hierarchy

12010.53
Product Item

12110.54
Product Goods Component

12210.55
Product Services Component

12310.56
Product Subproduct Component

12410.57
Product Type

12510.58
Resource

12610.59
Resource Type

12710.60
Schedule Entry Recurrence Specification

12810.61
Services Item

12810.62
Services Type

12910.63
Task

13110.63.1
Task / Specific Task

13210.63.1.1
Task / Specific Task / Actual Task

13310.63.1.2
Task / Specific Task / Planned Task

13410.63.2
Task / Template Task

13510.64
Task Dependency

13610.65
Task Type

“Strict modelling of the real world leads to a system that reflects today’s realities but not necessarily tomorrow’s. The abstractions that emerge during design are key to making a design flexible”

(Design Patterns by Gamma, Helm, Johnson & Vlissides)

“… using simpler and more generic models, we will find they stand the test of time better, are cheaper to implement and maintain, and often cater to changes in the business not known about initially”

(Data Model Patterns by David Hay)

 “People often react to a simple model by saying ‘Oh yes, that’s obvious’ and thinking ‘So why did it take so long to come up with it?’ But simple models are always worth the effort. Not only do they make things easier to build, but more importantly they make them easier to maintain and extend in the future. That’s why it’s worth replacing software that works with simpler software that also works.”

(Analysis Patterns by Martin Fowler)

1 Introduction

1.1 Purpose
This document on light-weight data model patterns is a supplement to Part #2 of a trilogy, but also stands alone.

The trilogy explains:

· Part #1: Why the quality-at-speed that is often demanded by the business can at times best be achieved via big-picture, top-down data modelling.

· Part #2: How big-picture, top-down data models can actually be developed.

· Part #3: Areas where big-picture, top-down data models can be applied (for example, enterprise data warehousing / Data Vault / data integration, IT strategy development, master & reference data management, business rule glossaries, service oriented architectures, and last but far from least, getting “Agile”).

As a stand-alone artefact, it is most certainly not intended to be a replacement for the excellent data model pattern reference books of authors such as David Hay and Len Silverston. In certain cases, the light-weight patterns in this document may prove to be sufficient for a jump-start, or even for longer-term application. I have repeatedly proven it to be so. In other cases, they may provide an easy-to-understand introductory context for the rich patterns of David and Len which can then be referenced on a case-by-case basis.
1.2 A comment on data model patterns

For those new to the world of data model patterns, and their use in the development of a big-picture top-down model, an analogy may be helpful.

Christopher Alexander, arguably the founder of the patterns movement, was an architect. He designed everything from individual buildings right through to entire towns. By documenting a palette of common reusable patterns, he could quickly assemble a high-level view of the intended construction.

Here’s the key point I wish to make. In an architect’s concept sketch, the details for a given window, door, bridge, school or whatever may be missing, but if based on proven patterns, everyone knew they could be built. If a data modeller develops a high-level view using proven patterns, some details may be missing but a developer can actually code a working solution.
1.3 Open use of this material

John Giles, the author of this document, retains intellectual property rights in its contents. However, in the spirit of open sharing, it may be copied in whole or in part with no fee, and adapted freely by others. The only condition on its reuse is that the source be noted.

1.4 Cross-references to additional material
There are many excellent books on data patterns, both within the data modelling fraternity and the object-oriented world. The two authors I recommend as producing robust reference books are David Hay and Len Silverston.

· David Hay first published on data models patterns in his excellent 1995 book titled “Data Model Patterns: Conventions of Thought”. His expanded and updated version (published in 2011) is titled “Enterprise Model Patterns”.

· Len Silverston published the brilliant “Data Model Resource Book” 3-volume series. Volume 1 is a collection of “universal” data models. Len’s first volume looks the building blocks that can be applied in a myriad of situations (and this document you are reading right now could be seen as being a light-weight introduction to Volume 1). His second volume maps these universal patterns to a variety of industries, one of which may be yours! And the third volume, co-authored with Paul Agnew, looks at how the foundational patterns can be presented along a spectrum, from generalised through to specialised. If you are ever on the edge of a debate about the values of data model patterns where one concern is that they are “too generalised” or “can’t be implemented”, I highly recommend participants take the time to reference Len & Paul’s work.
2 An introduction to the 9 pillars

2.1 9-Pillar Schematic

Below is a schematic of what I frequently refer to as the 9 “pillars” of data model patterns. Each is briefly described below, and more fully described in the main body of this document.

[image: image1.emf]Party & Role

Event

Account

Location

Document

Agreement

Task

Product

Resource

/ Asset

2.2 9-Pillar outline
Each of the 9 “pillars” of data model patterns is briefly described below.

[Note:
In the list below, and throughout the document, examples are frequently given that relate to emergency response to wildfires. The patterns have been applied to many scenarios, including emergency response, and any of these could have been used as case study material. However, the wildfire setting is one that is arguably easier to understand with concrete examples, and hence is the one chosen.]
	Account
	A simplified representation of records for financial accounting (e.g. bank accounts, creditor / debtor accounts …).

	Agreement
	A formal or informal arrangement between parties (e.g. a binding mortgage contract with a financial institute). Formal agreements such as contracts typically also involve the Document pattern to provide documentary evidence of the agreement – see ‘Document’ below.

	Document
	Either a hard copy document, or a soft copy (electronic) document. Examples may include a hard copy of a purchase-of-land contract, a scanned image of a loan guarantee agreement, or a smart phone image or video.

	Event
	A noteworthy event (e.g. an accident at work, or the outbreak of a fire).

	Location
	A geospatial location as it appears on a map (e.g. the point at which a fire started, a line representing the current fire front, or an area that has been burnt by a fire).

	Part & Party Role
	A party (a person or an organisation) involved in a role. For example, in a bank mortgage, one party (the bank) is an organisation in the role of lender, and another party may be an individual in the role of borrower.

	Product
	A goods and/or services item offered for purchase.

	Resource
	An asset (e.g. company car, a computer, or a building).

	Task
	A planned or actual item of work (e.g. the work involved in fighting a fire).

3 Model notes

3.1 High-level, Conceptual, Logical and Physical models

The data model patterns are deliberately generalised to be widely (“universally”?) applicable. As noted in Len Silverston & Paul Agnew’s Volume 3, these generalised patterns can be directly implemented, but can also be specialised for particular business scenarios.
This document deliberately mostly refers to “high-level” models rather than conceptual or logical models, for several reasons.
· Unfortunately, amongst data model practitioners, there is contention as to the precise expectations for conceptual versus logical models.

· My experience has shown that, with careful introduction of the patterns to business people, they are comfortable with the ideas behind the patterns, and can map them to their own business concepts.

· As has been noted, the patterns are technically solid, and given the guidelines articulated by Len & Paul, can easily be used as the basis for a logical model that then can be physically implemented.

3.2 Attribute details

Not all attributes for an entity are necessarily provided. As a high-level data model pattern, only major attributes that are deemed to be helpful in communicating the essence of the entity are provided. When you adapt a pattern for your own purposes, further details are likely to be required.

3.3 Time dimension

As a default, the models provided largely reflect a point-in-time view of the data structures. However, when applied to a specific implementation (e.g. a Data Vault), the patterns may need to be adapted to incorporate the time dimension.

3.4 Documenting the patterns
To help explain the patterns, a number of real-world scenarios are used. For example, several of the scenarios are based on wildfire emergency response scenarios. Of course, in applying these multi-purpose patterns to your situation, please feel free to adapt the models and their documentation to your situation.

This document aims to provide a gentle introduction to data model patterns. The patterns, and their groupings, are presented one topic at a time. More comprehensive definitions are provided in the Dictionary towards the end of this document.

3.5 Modelling notation

One reason for using the Unified Modelling Language (UML) notation is its increasing international acceptance as a standard. However, the primary reason for using the UML class model notation rather than a more traditional data model using an entity-relationship diagram (ERD) notation is that the patterns can be applied in a variety of situations, only some of which may involve a relational database as the intended physical platform.

A sample UML class diagram follows, with notes on key aspects of the notation.
[image: image27.emf]Party &

Role

Event

Account

Location

Document

Agreement

Task

Product

participates in ,

signatory to , ...

sited

at

copy

filed

as

constrained

by

Resource

/ Asset

· Each rectangle identifies a “class” which represents a collection of similar business objects. For example, the Party class represents the parties of interest to the enterprise (clients, employees, subcontractors, etc.). The class name appears in the first box in the rectangle. Optionally, the second box lists data attributes, and the third (not shown in this example) lists object-oriented operations. A class approximates what a data modeller may call an entity (which is more correctly an entity type, but modellers seem to rarely make this distinction, and I won’t push it).
· A class at the head of an open arrow (e.g. Party) is a ‘superclass’; the classes at the other end are ‘subclasses’ (e.g. a Person or an Organisation). Any aspect of the superclass applies to all subclasses. For example, because a Party has an attribute called “name display string”, this attribute is applicable for both people and organisations. Conversely, aspects of a subclass are unique to them. For example, people have a gender, but organisations don’t! [Note that the concept of a superclass and its subclasses approximates the data modelling concept of a supertype and its subtypes.]
· A diamond indicates containment. In this case, a Person Name, with attributes such as Person Name Type (birth, preferred, …) and Family Name may “contain” multiple Given Names.

· A simple line between classes indicates a basic association relationship. Organisation Names are associated with Organisations. The line may optionally be labelled to give it more meaning (not shown in this example).

· The containment and association lines may have multiplicity notation at each end. For example, the relationship between Person and Person Name is to be read that each Person must be linked to one or more Person Names, and that each Person Name must be linked to one and only one Person. The concept of multiplicity approximates the combines the data modelling ideas of optionality and cardinality. Some examples of notation descriptions follow:

· “1” (or “1..1”, or blank) – Exactly one.

· “0..1” – Optional (zero or one)

· “*” (or “0..*”) – Many (zero or more)

· “1..*” – At least one, but may be more

3.6 Keys

In a relational data model, it is customary to identify primary keys (the attributes nominated to uniquely identify instances) and foreign keys (the basis of defining relationships between entities). In the object-oriented paradigm, all objects will have a unique identifier, but these are system-assigned, meaningless, and may not even be visible to the programmers let alone system users. They somewhat approximate data models with surrogate keys.

For these model patterns, the specification of identifiers is not mandated. However, where “natural” keys occur and where they are deemed to be important business attributes, they may be included.

3.7 Many-to-many associations

In a relational data model, it is not uncommon to have many-to-many relationships portrayed with a “resolution” entity. This reflects the requirement for a relational implementation to resolve any such many-to-many relationships. In the OO paradigm, not only can many-to-many associations be modelled, but they can be directly implemented.

This model does not presume to mandate the resolution of many-to-many relationships. Only where the resolution entity (or “association class” in OO terms) reflects genuine business concepts will the resolution be expected.
3.8 Typing of classes

There are two common ways a class can be “typed”.

Firstly, a class can be subclassed. For example, if we have a logical class named “Resource”, it might be subclassed into Vehicle and Equipment. The Vehicle subclass might in turn be further subclass into Land Vehicle, Boat, and Aircraft, and Equipment class into Generator, Pump and so on. The model may explicitly identify such subclasses. One advantage of this approach is that these “types” of Resources can have their own specialised attributes and associations (and operations/methods, etc.).

Alternatively, and especially where the subtypes have no need for their own specialised attributes and associations, we can model a “type” class. For example, we could have a Resource Type class. If this were to be physically implemented as a relational table, we might expect to see rows with descriptions of “Generator” and “Aircraft”.

Both approaches support nesting of types. The former inheritance approach can support subclasses of the subclasses. For example, the Aircraft class could be subclassed into Fixed Wing and Helicopter subclasses. Alternatively, the Resource Type reference data set could have a self-referencing association to allow the definition of fine-grained types within types.

The high-level top-down model is not a physical model, and it deliberately avoids prejudging implementation decisions. Hence it is recommended that the model use both typing mechanisms to “type” classes, only performing traditional subclassing where the related attributes or associations warrant this approach. Further, as the model is to be used to generate development artefacts (e.g. relational database schema, XML schema, and machine-readable business rules for constraints and derivations), it is recommended that options be kept open for consolidation of both approaches into one structure.

3.9 Business rules

There are a number of ways business rules can be managed within an IT system. For example, some rules are enforced by the data structures, while others are enforced in program code, or even by a business rules engine.

The focus for this model is on the ability to capture business objects. The design for some capture of business rules may be included, but this is not intended to imply any choice of physical implementation.

3.10 Case study examples

I have already mentioned that, for the sake of a consistent scenario, a number of the examples focus on emergency response to wildfires. Please also note that where people’s names are given (Alex, Brook, Chris, Dan etc.) I have sought to have gender neutral names – is “Chris” a Christopher or a Christine? The reason I have done this is that I have encountered workplace situations where implied gender is an issue. So on a light note, if you get a bunch of data modellers in a room, there is likely to be some divergent views expressed; I figure that having one less area for debate is a good thing. I hope you agree.
4 Pattern Group #1: Parties, Roles & their Agreements

We start by looking at the Party and Party Role patterns. They are possibly the most quoted, and the most controversial, of the data model patterns. I get the impression that some love them, and some hate them. I don’t believe it has to be this way, especially if the variations presented by Len Silverston and Paul Agnew are taken on board.
4.1 Pattern: Party

4.1.1 Introduction to the pattern

As an example, in Australia, when people sell their home to others, the solicitors talk of the “parties” to the transfer-of-land transaction. The sellers (vendors) and buyers (purchasers) can be one or several individual people, or they can be “organisations” (limited liability companies, trusts, partnerships and so on).

At its most basic, “party” is a collective term for individual people and organisations. In data modelling terms, Party is the supertype, and Person and Organisation are subtypes.

In the example of parties involved in a transfer of land transaction, there may be several roles played – the vendor, the purchaser, real estate agents, lenders, and so on – but these separations of responsibilities are called Party Roles – a separate but related pattern.
4.1.2 Party and its subtypes as a foundation
To begin, let’s look at the following diagram.

[image: image2.emf]effectivePeriod

Party

gender

Person

Organisation

Using the UML notation, the arrows point from the subtypes (the UML calls them subclasses) of person and organisation, to the supertype (superclass) of party.
One subtype attribute is noted for person i.e. the gender attribute. It is just an example, demonstrating that the subtype attribute applies to person only.

The party supertype has an attribute called effective period. Note:
· In the object-oriented world shown here using the UML, the data type of an attribute can be a user-defined extension to the base data types. For example, the data type of a “period” can be a pair of dates; the ‘from’ date and the ‘to’ date.

· This attribute on the supertype applies to all subtypes. For example, the start of the effective period for a person might be their date of birth, and the start of the effective period for an organisation might be their date of incorporation.
The model below introduces a simple reference table to classify parties. Most if not all of the types will relate to classification of organisations rather than people. Types of organisation classifications may include government versus private, local versus overseas, or perhaps the type of industry (manufacturing, retail, hospitality and so on, with their own hierarchy of subtypes) – it’s up to you and your needs.
[image: image3.emf]effectivePeriod

Party

gender

Person

Organisation

partyTypeCode

partyTypeDescription

PartyType

0..1

0..*

classification

[Classification mechanism

typically applied to

Organisations, not to

Persons.]

0..1 0..*

subclassification

This first model is fine as an introduction, but it is insufficient. For example, it does not provide the expected structures for party names and addresses. Richer models follow.

4.1.3 Party names

A party may have several names. For example, an organisation may have a registered name and a trading name, and a person may have their birth name, a preferred name, and if they are an author they may have a pen name, and so on. The model below is one of a large number of variations on the “Party” pattern, and in part reflects an Australian standard. It is likely you may choose to refine it for your particular usage.
[image: image4.emf]effectivePeriod

Party

gender

Person

Organisation

personNameType

salutation

familyName

postNominal

effectivePeriod

PersonName

givenName

sequenceNumber

PersonGivenName

orgNameType

orgName

effectivePeriod

OrganisationName

1

1..*

containment

1 0..*

containment

1

1..*

containment

This model accommodates each party having several names of different types.
This model’s structure for person names can be seen as reflecting “western” thinking. Not all names across all cultures neatly fit such a model. For example, I encountered a scenario where names of a people group in northern Africa reflected a much richer construct. The “full name” formally included the job title, perhaps a bit like early English people had surnames such as Cook, Baker, Tailor, and Farmer. In this particular culture, the name also included such declarations as the name of the individual’s father and grandfather, and sons and grandsons if applicable – a paternalistic view. It also added the form of Islam followed by the individual, and a statement as to whether the pilgrimage to Mecca had been performed or not. And on and on.

The conclusion? An Australian / western standard may not work for you! Use it if it fits, but adapt and extend it to meet your needs.
4.1.4 Party addresses

You thought names were complicated? Addresses are much worse. Sorry.
[image: image5.emf]effectivePeriod

Party

effectivePeriod

AddressService

addressDisplayString

effectivePeriod

Address

postalDeliveryDescription

town

state

postcode

country

DPID

DX

PostalAddress

flatIdentifier

floorIdentifier

propertyName

locationDescription

streetNumber

streetName

town

state

postcode

country

PhysicalAddress

countryPrefix

areaPrefix

localNumber

PhoneNumber

emailAddressString

Emailddress

1

0..*

(link)

1

0..*

(link)

addressUsageTypeCode

addressUsageTypeDescription

AddressUsageType

addressServiceTypeCode

addressServiceTypeDescription

AddressServiceType

Examples of Address Service Types &

Address Usage Types might include:

-Service=PhysicalAddr,

Usage=PostalAddr, Residential Addr,

Work Addr, ...

-Service=PostalAddr

Usage=Postal(!)

-Service=FixedPhone

Usage=HomePh, BusinessPh,

BusinessFax, ...

-Service=MobilePhone

Usage=Personal, Business, ...

-Service=Email

Usage=Personal, Business, ...

0..1

0..*

classification

1

0..*

constraint

Just like parties can have multiple names, they can have multiple addresses. For example, an organisation can have its physical business address plus a postal address. A person can have their home address, their work address, one or several email addresses, and one or several mobile phones (in this model, a phone number is a subtype of address, along with email address and other subtypes).

Not only can each party have multiple addresses, but each address can be shared by many parties. The address “1 Main Street” may be the home address for two people.
Now here’s a point that needs to be considered. I have worked for several organisations where a physical street address is an entity in its own right. That’s true for our state’s land titles register. It’s also true of water utilities that record addresses where water meters are installed even if the property has nobody living there. It has its own identifier, and can be created without any need to be associated with its residents or owners. It is its own primary thing. Similarly, for a telecommunications company, a phone number may be an entity with its own independent life.

Conversely, I have consulted to organisations where addresses are just attributes in a customer record or an employee record. If two employees (or customers) live at the same address, the text string is simply replicated in each employee (or customer) record. There is no desire to match addresses. In such cases, the Party model shown above is unnecessarily complicated and can be abandoned, moving the address details to the relevant subtypes of the Party Role pattern (employee, customer or whatever).
However, if you want the richness of this model, there is one further consideration. The many-to-many resolution entity between parties and their addresses is modelled as an address service. The usage by one party of one address is typed – maybe Alex uses 1 Main Street as both a residential address and a work address (Alex works from home). The model presents two reference entities. The address service type approximates the subtyping structure of the address entity (though potentially with finer grain e.g. distinguishing between a fixed phone and a mobile phone), and the address usage type classifies the way the address is used by the related party. Again, do you want or need this richness? Maybe, maybe not. It’s your choice.
4.1.5 Party identifiers

In Australia, two of the common identifiers for a company are an Australian Company Number (ACN), and a Tax File Number (TFN). The candidate identifiers for people is even more diverse – Tax File Numbers again, but also passport numbers, drivers’ licence numbers, plus role-based identifiers such as employee numbers or customer numbers.
Now here’s where the model may surprise you, especially if you have a relational modelling background. As traditional data modellers, we’re used to scenarios where an entity has multiple candidate identifiers. We pick one as the primary key (assuming we don’t use surrogates). However, the model below simply records that a party can have multiple identifiers, and doesn’t go out of its way to nominate the “primary” identifier.

[image: image6.emf]effectivePeriod

Party

partyIdentifierType

partyIdentifierValue

effectivePeriod

PartyIdentifier

1

0..*

identification

That really shouldn’t be a problem for modelling the big-picture view of data. Of course, the physical implementation can vary from the platform independent view. That’s fine.

4.1.6 Relationships between parties

Parties often have interrelationships. You can have organisation-to-person relationships such as an organisation employing an individual. You can have person-to-person relationships e.g. two people can marry (well, at least in Australia, marriage involves only two people – polygamy is illegal here). And you can have organisation-to-organisation relationships such as one company owning another. The model below accommodates all of these, and more.

[image: image7.emf]effectivePeriod

Party

effectivePeriod

PartyToPartyRelationship

partyToPartyRelationshipTypeCode

partyToPartyRelationshipTypeDescription

participant1Role

participant2Role

PartyToPartyRelationshipType

1

0..*

participant1

1

0..*

participant2

1

0..*

classification

For example:

-Employment

-Marriage

-Ownership

-etc.

4.1.7 A consolidated view of Party
Pulling all these snippets together, we get a consolidated model for Party:
[image: image8.emf]effectivePeriod

Party

gender

Person

Organisation

effectivePeriod

AddressService

addressDisplayString

effectivePeriod

Address

postalDeliveryDescription

town

state

postcode

country

DPID

DX

PostalAddress

flatIdentifier

floorIdentifier

propertyName

locationDescription

streetNumber

streetName

town

state

postcode

country

PhysicalAddress

countryPrefix

areaPrefix

localNumber

PhoneNumber

emailAddressString

Emailddress

1

0..*

(link)

personNameType

salutation

familyName

postNominal

effectivePeriod

PersonName

givenName

sequenceNumber

PersonGivenName

orgNameType

orgName

effectivePeriod

OrganisationName

1

1..*

containment

1

0..*

containment

1

1..*

containment

partyIdentifierType

partyIdentifierValue

effectivePeriod

PartyIdentifier

1

0..*

identification

1

0..*

(link)

partyTypeCode

partyTypeDescription

PartyType

0..1

0..*

classification

[Classification mechanism

typically applied to

Organisations, not to

Persons.]

0..1 0..*

subclassification

effectivePeriod

PartyToPartyRelationship

partyToPartyRelationshipTypeCode

partyToPartyRelationshipTypeDescription

participant1Role

participant2Role

PartyToPartyRelationshipType

1

0..*

participant1

1

0..*

participant2

1

0..*

classification

For example:

-Employment

-Marriage

-Ownership

-etc.

addressUsageTypeCode

addressUsageTypeDescription

AddressUsageType

addressServiceTypeCode

addressServiceTypeDescription

AddressServiceType

Examples of Address Service Types &

Address Usage Types might include:

-Service=PhysicalAddr,

Usage=PostalAddr, Residential Addr,

Work Addr, ...

-Service=PostalAddr

Usage=Postal(!)

-Service=FixedPhone

Usage=HomePh, BusinessPh,

BusinessFax, ...

-Service=MobilePhone

Usage=Personal, Business, ...

-Service=Email

Usage=Personal, Business, ...

0..1

0..*

classification

1

0..*

constraint

4.2 Pattern: Party Role

The preceding Party model holds data for a party (an organisation or a person) such as their name and address details.

These parties can play one or several roles. For example, an individual named Alex might be an employee of Acme, but might also be a customer of Acme. In theory, you could expect an individual’s name and address details to be the same, no matter what their role. Arguably these personal details for Alex would be recorded in one place – against the party, not replicated against their records as an employee and as a customer. A well-known solution, known as the Party / Party Role pattern, is described in many information modelling “patterns” books – Hay’s “Data Model Patterns”, Silverston & Agnew’s “The Data Model Resource Book, Volume 3: Universal Patterns For Data Modeling”, and Fowler’s “Analysis Patterns” to mention just a few.
The core concept is to separate a Party from its Role(s), and to allow specialisation of the data structure of the Role class. For example, employees have a salary, but that attribute is not applicable to customers. More detailed descriptions of the entities and their attributes are provided in this document’s Dictionary section.
[image: image9.emf]effectivePeriod

Party

partyRoleID

status

effectivePeriod

PartyRole

1

0..*

fulfilment

gender

Person Organisation

salary

Employee

Employer

partyRoleTypeCode

partyRoleTypeDescription

PartyRoleType

1

0..*

classification

0..1 0..*

subclassification

Customer

Is a Role Type

-a reference, or

-a subtype?!

Role's Status can be:

-Planned

-Actual

4.2.1 Concepts versus Implementation

While the management of party details (name, address …) by the party entity may make sense in theory, in practice, the personal details for Alex could well be recorded in multiple places e.g. in the employee payroll system and the customer relationship management system. And of course, the data structures in each may be different, and the data values may be inconsistent.
Going back to earlier comments, I get the impression that some people love the Party / Party Role pattern, and others hate it. So what do we do about the controversy on the usefulness of this pattern?

My first comment is that the Party / Party Role pattern’s applicability depends on the business, arguably more so that depending on the views of people in the IT department.
I have consulted to several companies that love this model. The business highly values a consolidated view. For example, they want to be able to pick up one individual and see all the roles that person fulfills. I stress, this is a business need, not driven by IT.
Conversely several of my clients have taken the completely opposite view. For example, most of the employees in one water utility are also customers, but for a variety of sensitive privacy reasons, the individual as an employee must never be associated with the same person as a customer. Again, it is the business that is driving this perspective.

My second comment is that I highly recommend reading Silverston & Agnew’s The Data Model Resource Book Volume 3, where this tension is presented and resolved. There are variations on the pattern, from highly generalised through to highly specialised, that can be selected for your particular scenario, but they are all valid variations of the one Party / Party Role pattern.

4.2.2 Declarative roles versus Contextual roles

Silverston & Agnew, again in The Data Model Resource Book Volume 3, note that there are declarative roles (e.g. you declare a party as a customer, an employee, or whatever) and contextual roles (e.g. given the context of a certain phone call informing the organisation of a matter of public concern, you observe that a party seems to be playing a “notifier” role – but that isn’t their full-time job!) The light-weight data model pattern for roles introduced above in this document is based on declarative roles. For a deeper understanding of contextual roles, I highly recommend reading Silverston & Agnew ‘s two chapters on declarative and contextual roles.
4.3 Pattern: Position

Some simplistic models for reporting hierarchies within organisations depict employees reporting to employees. For example, if Alex is the manager of Brooke, an Employee entity can have a simple self-referencing relationship from the subordinate employee’s record to that of their manager.

[image: image10.emf]salary

Employee

0..1

0..*

managed by

A widely recognised improvement on this model is to explicitly model a Position class.
[image: image11.emf]Organisation

effectivePeriod

PartyToPartyRelationship

effectivePeriod

Party

1

0..*

participant1

1

0..*

participant2

gender

Person

Generic Party-To-Party

Relationship class can be

used to record the

Organisational hierarchy

for objects in the

Organisation class.

positionTitle

effectivePeriod

Position

1

0..*

organisation structure

incumbencyType

percentAllocation

effectivePeriod

PositionAssignment

1

0..*

assignment

1

0..*

placement

effectivePeriod

PositionHierarchy

1

0..*

senior

1

0..*

subordinate

Positions are created within an organisation, and have a hierarchy. Employees are then assigned to these positions. In this model, rather than a person reporting to their manager (as described in the opening paragraph above), a person is assigned to a position that reports to a position to which their manager is assigned!

This may appear to be a bit more abstract and difficult to grasp, but arguably it has greater flexibility. For example, at a given point in time, a position may be vacant (i.e. it has no employee assigned), while at another point in time, it may have more than one employee assigned (e.g. in job sharing or “acting” roles during the absence of the primary person). Similarly, one person may fill multiple positions at the same point in time. Such occurrences would not be able to be accommodated by the simpler model mentioned in the opening paragraph.

A couple of comments follow.
Firstly, many of the standard patterns assume positions exist within a formal, relatively static organisation structure. In an emergency response scenario (e.g. formation of a crew to respond to a wildfire or flood), such static “day-job” positions of course do still exist, but are supplemented by emergency response positions within crews. These positions are often structured around practices for incident management, and their construction may be guided by templates.

Secondly, the common employee/position pattern assumes that people assigned to positions are actually employees. However, it is possible to have people assigned to positions that are not necessarily considered “employees” in the traditional sense. That is why the above model links the person entity to the position assignment rather than a more specific employee entity.
4.3.1 Positions and organisation structures

Organisations have structure. They may have departments, sections, divisions, and so on, relating to each other in a hierarchy. Positions also have structures. One position reports to another, which in turn reports to an even higher position. And positions are created within organisations!

Rather than trying to accommodate both hierarchies in one structure, the model intends to allow both to coexist. For example:

· There may be a hierarchy of positions, all within one organisation unit.

· A position “belonging” to one organisation unit may report to a position “belonging” to another organisation unit.

4.4 Pattern: Agreement

An agreement (or “contract” – see Hay’s “Data Model Patterns”) represents some formal or informal arrangement between parties. Examples of formal agreements might include lease contracts for vehicles, or employment contracts. An example of an informal agreement might be the recording of Dan’s willingness to chair tomorrow’s design review meeting.

[image: image12.emf]agreementReference

effectivePeriod

Agreement

effectivePeriod

AgreementToAgreementRelationship

agreeToAgreeRelationshipTypeCode

agreeToAgreeRelationshipTypeDescription

participant1Role

particpant2Role

AgreementToAgreementRelationshipType

agreementTypeCode

agreementTypeDescription

AgreementType

1

0..*

classification

0..1 0..*

subclassification

documentReference

effectivePeriod

Document

0..*

0..*

agreement documentation

1

0..*

participant1

1

0..*

participant2

1

0..*

classification

contextualRoleType

effectivePeriod

AgreementParticipation

1

0..*

signatory

partyRoleID

status

effectivePeriod

PartyRole

partyRoleTypeCode

partyRoleTypeDescription

PartyRoleType

1

0..*

classification

1

0..*

declarative role

EmploymentContract

salary

Employee

Employer

Subclasses included

as examples only

Examples could include:

-Succession (old version

replaced by new)

-Cross-reference

sequenceNumber

AgreementItem

1

*

This class may have "references"

associations with many other

classes, but they are not shown

here.

effectivePeriod

Party

1

0..*

fulfilment

1

0..*

contextual role

{OR}

Agreements are typically linked to the Party Role entity that records the parties involved in the agreement, and their roles, which is why the Agreement pattern is included here within the context of parties and their roles. For example, an employment contract could be expected to have the employer and the employee involved. A transfer-of-land agreement might involve the vendor(s), the buyer(s), solicitors for both sides, banks for both sides, maybe a guarantor, and so on.

Agreements can be linked to associated agreements e.g. a subcontract may be associated with the larger, overarching contract, or one agreement may be the updated replacement for the now-obsolete version.

The model includes an entity called agreement item. It is a placeholder only for things such as an order’s line items, and would require subtyping for specific scenarios.

This model also represents a concept called “Document”, which is its own pattern (described later in this document). The agreement entity is responsible for managing the structured data related to arrangements. Examples of structured data might include date signed, status, reference number, and of course, the involved parties and their roles. The Document entity is used to store copies of any document, whether they are related to contracts or not. Documents can be physical documents (signed contracts, company brochures, magazines, etc.) stored in physical files, or they may be electronic documents stored on some computer.
5 Pattern Group #2: Tasks, Events & assigned Resources
5.1 Event-Driven Architecture

Within computer science, there is the concept of event-driven architectures. A gross simplification suggests that the occurrence of an event (e.g. the clicking of the “Commit” button) is observed and published by one piece of software, and separate pieces of software consume this knowledge and react accordingly.

Somewhat similar relationships can be observed in the business world. Business events occur, they are noted, and appropriate business responses follow. There is an elegant bi-directional relationship between the business events and the corresponding business responses. Let’s start by looking at a model of this synergy.

[image: image13.emf]eventID

eventDesc

status

effectivePeriod

Event

SpecificTask

0..1

0..*

task start or end treated as noteworthy event

0..1

0..*

event acts as trigger for task

The idea behind an event is “something noteworthy” that happens at a point in time. Maybe going for a cup of coffee is an event of importance to me, but it is probably not considered to be noteworthy from a corporate perspective. In an emergency response setting for wildfires, the outbreak of a fire is a major event. A hopefully infrequent but still vitally important event is an occupational health and safety “personal injury” event if a firefighter is hurt.

The idea behind a task is typically some work to be done. For a wildfire, forming the initial response team is a task. Once this team is formed, it heads out and inspects the fire – this inspection activity is another task. If it’s a big fire, there will be a complex set of tasks required to be performed before the fire is eventually put it out.

Now let’s look briefly at the interaction between events and tasks. Someone reports smoke – that’s a noteworthy event. One of the two relationships between events and tasks is an event acting as a trigger for a task. The “smoke reported” event triggers the formation of the initial response team.

The team arrives and evaluates the situation. This may be where the “task start or end treated as a noteworthy event” relationship may come into play. If it’s a smoky barbeque and all is under control, the completion of the evaluation task may be treated as a noteworthy event of type “false alarm”, and it’s all over. However, if it’s a genuine wildfire which is already running fast, the evaluation task may result in recording of a “fire confirmation” event. The evaluation team may sometimes also record a “suspicious cause” event if it looks like the fire was deliberately lit.

Now the two-part cycle really kicks in. The “fire confirmation” event may trigger a whole series of response tasks, and the “suspicious cause” event may trigger separate forensic investigation tasks. And each of these sets of tasks may have subsequent events that in turn trigger more tasks.
5.2 Pattern: Event

When something happens that the business deems to be “noteworthy”, a record of that business event is created. Something as common as a customer ringing to make a product enquiry may be a considered noteworthy. As described above, the occurrence of a noteworthy event typically triggers activity, modelled in this document as a task.

[image: image14.emf]eventID

eventDesc

status

effectivePeriod

Event

effectivePeriod

EventToEventRelationship

eventToEventRelationshipTypeCode

eventToEventRelationshipTypeDescription

participant1Role

participant2Role

EventToEventRelationshipType

CommunicationEvent

eventTypeCode

eventTypeDescription

EventType

1

0..*

classification

0..1 0..*

subclassification

1

0..*

participant1

1

0..*

participant2

1

0..*

classification

Examples could include:

-Wildfire

-Occupational Health & Safety incident

-Customer complaint

-etc.

Subclasses included

as examples only

SafetyIncident

ObservationEvent

In the case of wildfires, an example

of associated events is a pair of fires

that subsequently merge into one

larger fire.

SpecificTask

0..1

0..*

task start or end treated as noteworthy event

0..1

0..*

event acts as trigger for task

Events can be linked to associated events. For example, a “vehicle accident” event may be linked to an associated “personal injury” event if an occupant is hurt. For the wildfire emergency response scenario, two “fire confirmation” events for separate fires may be linked together if the fires run and form one larger complex fire.

The event entity is a supertype, defining minimal common attributes and relationships. Its subtypes (examples of which are shown in the above model) may have specialised attributes and relationships.
5.3 Pattern: Task

The task entity typically records details either for some work to be done in the future – a planned task – or some work already started if not yet already completed – an actual task. Len Silverston’s “The Data Model Resource Book, Volume 1: A Library of Universal Data Models for All Enterprises” represents many of these concepts within the “Work Effort” set of patterns.

[image: image15.emf]TaskID

TaskName

TaskDescription

TaskComment

durationUOM

Task

actualStartDateTime

actualFinishDateTime

ActualTask

plannedDurationMetric

plannedEarlyStartDateTime

plannedEarlyFinishDateTime

plannedLateStartDateTime

plannedLateFinishDateTime

PlannedTask

SpecificTask

dependencyType

lag

guardCondition

TaskDependency

plannedDuration

TemplateTask

Note that the "Task" subject area

is a logical representation of much

of the functionality that might be

expected to be implemented in a

software addressing:

-Project manangement (CPM, PERT)

-Workflow management

-Business process management

(&/or)

-Calendar functions.

1

0..*

predecessor dependency

1

0..*

successor dependency

TaskTypeCode

TaskTypeDescription

TaskType

1

0..*

classification

calendarName

Calendar

0..* 0..*

composition

0..1 0..*

composition

0..1

0..*

cloning

0..*

0..*

fulfilment

0..1

0..*

scheduling

0..1 0..*

subclassification

repeatFrequency

effectivePeriod

ScheduleEntryRecurrenceSpecification

1

0..*

RepeatSpecification

[Recurrence Specification is used to

define cyclic entries, for example,

"First Tuesday each month".

Details of this structure are not

fully analysed here, but may be inferred

from similar functionality in desktop

or smartphone applications.

eventID

eventDesc

status

effectivePeriod

Event

0..1

0..*

task start or end treated as noteworthy event

0..1

0..*

event acts as trigger for task

There are many “units of work”, at various levels of granularity, and often labelled as “projects”, “jobs”, “tasks”, “subtasks”, and so on. This model represents them as a generic concept called “task”. As with many generic concepts, there are properties that are likely to be common across a range of similar objects, and properties that will have to be distinctive to the specialised types. Maybe projects have budgets and project managers assigned, but discrete, atomic jobs might not. Nonetheless, it is suggested that benefits may be gained by modelling the generic concept and allowing for specialisation where required.

The pattern differentiates between template tasks and specific tasks. For example, there may be standard expectations of the steps involved in responding to a reported wildfire outbreak; this may be captured as a set of template tasks. Such templates could then be taken as a starting point for cloning to create specific instances of specific work.

Some properties of Tasks are listed below:

· Tasks may be components in larger tasks and/or may be broken down into finer-grained tasks – refer to the “composition” relationships in the model.

· Tasks may have dependencies on other tasks, perhaps the most common being a “finish-to-start” dependency i.e. the first task must finish before the second task can start – refer to the task dependency entity in the model.

· Tasks may have physical resources and/or human resources assigned to them, with usage recorded for costing purposes – more on this in the following sections.

5.4 Pattern: Resource

The concept of a resource is sometimes also known as an asset. Examples could include buildings, computers, company cars, consumables and much more. The model below gives several examples from a wildfire emergency response scenario. It is interesting to note that from a wildfire logistic officer’s perspective, people could be seen as “just” resources.

[image: image16.emf]resourceID

resourceName

effectivePeriod

Resource

resourceTypeCode

resourceTypeDescription

ResourceType

1

0..*

classification

0..1

0..*

subclassification

Is a Resource Type

-a reference, or

-a subtype?!

Vehicle Equipment

Consumable

HumanResource

LandVehicle Aircraft Boat Generator

RakeHoe

Fuel

FireTruck

SlipOn

FireTanker

SlipOnUnit

FixedWing

Helicopter

Food

WaterBomber

FLIR

0..1

0..1

attachment

(Subclasses displayed

are just a few of many)

The concept of a resource may be relatively straightforward, but its relationships may be more complex. Though not shown on the diagram above, they may include, for example:
· A link to its geospatial location.

· Links to associated resources. In the diagram above there is a relationship between a slip-on four-wheel-drive tray vehicle and the slip-on tank-&-pump unit that is attached to the vehicle in summer.

· Its assignment to certain tasks (e.g. a fire truck assigned to a work on fire fighting activities).

· Its association with events (e.g. a fire truck involved in an accident).

· Its involvement with agreements, accounts and other parties (e.g. the association of a helicopter leased from a United States supplier).

5.4.1 Assignment of Resources, Parties and Party Roles to Tasks

We have introduced patterns for tasks. Now we look at what we need to do to assign “resources” to task.
[image: image17.emf]TaskID

TaskName

TaskDescription

TaskComment

durationUOM

Task

quantity

assignmentPercentage

effectivePeroid

ObjectTypeToTaskAssignment

1

0..*

participation

assignmentPercentage

effectivePeriod

ObjectToTaskAssignment

1

0..*

participation

resourceTypeCode

resourceTypeDescription

ResourceType

1

0..*

requirement specification

0..1 0..*

subclassification

resourceID

resourceName

effectivePeriod

Resource

1

0..*

resourcing requirement

partyTypeCode

partyTypeDescription

PartyType

1

0..*

requirement specification

0..1 0..*

subclassification

effectivePeriod

Party

1

0..*

resourcing requirement

partyRoleTypeCode

partyRoleTypeDescription

PartyRoleType

1

0..*

requirement specification

0..1 0..*

subclassification

partyRoleID

status

effectivePeriod

PartyRole

1

0..*

resourcing requirement

Note: These associations

are "Exclusive Or"

associations.

Note: These associations are

"Exclusive Or" associations.

{OR}

{OR}

{OR}

{OR}

SpecificTask

plannedDuration

TemplateTask

Note: Typically, Template Tasks will have

Object Types assigned (e.g. "I want

two Firefighters and one 4WD fire truck").

Conversely, Specific Tasks will typically

have specific Objects assigned (e.g. "I want

Alex, Brooke and that fire truck over there").

However, a Template Task could nominate

that a specific Object is by default to be used,

and a Specific Task can nominate the

assignment of an Object Type.

Those familiar with project management tools such as Microsoft Project will be aware that, in that context, the term “resource” is inclusive of physical resources (such as cars and computers) and human resources. In the model displayed above, a subtle distinction is made between the resources represented by the “Resource” entity, and what we have modelled as parties and their party roles. For example, a specific task for fire fighting commencing tomorrow at 9:00am might have assignments that include
· The fire truck with registration ABC-123 (from the “Resource” entity).
· Acme Catering (an organisation i.e. a subtype of “Party”).

· Dan in the role of Driver (a party in a “Party Role”).

Sometimes a specific task (tomorrow’s fire fighting task starting at 9:00am) might have specific instances of resources, parties and party roles assigned, as in the above bullet list of examples. It can also have assignment of generic types of resources, parties and party roles assigned e.g. the assignment of a water pump (from the “Resource Type” entity), without nominating the precise pump.

6 Pattern Group #3: Products (tangible goods, intangible services)

6.1 Pattern: Product

6.1.1 Introduction to the pattern

Products are the things sold by companies. Pretty simple? Unfortunately there is some inconsistent usage of the word “product”, even amongst data modellers.
Let’s take an example. Acme Air sells three types of air conditioners; one model of evaporative cooler (model number “EC”), a small reverse-cycle model (model number “SRC”), and a large reverse-cycle model (model number “LRC”). When you speak to some modellers (and assuming a relational implementation), they will say Acme Air will have three rows in the “Product” table.
Acme Air is a pretty small outfit, and so far it has sold 100 evaporative coolers, 300 small reverse cycle air conditioners, and 500 large reverse cycle air conditioners. Every one of those 900 products sold has a unique serial number. Some modellers, they will say Acme Air will have 900 rows in the “Product” table. So does the “Product” table have three rows, or 900?
David Hay, in his book “Data Model Patterns”, differentiates by calling the catalogue of product types “Product Type”. That’s pretty sensible, in my opinion. So in the above example, the catalogue of Product Types would have 3 entries. David also has an entry for product instances, which he simply calls “Product”. I have no problem with that name as, within the context of David’s patterns, he is crystal clear about the meaning.
Then we have Len Silverston, another of my favourite data model pattern authors. He names the entity defining product types as simply “Product”. Oops. That’s different to David’s use of the word “Product”. Within Len’s books on patterns, he, like David, is consistent and clear. But confusion can arise when a casual comparison of their patterns is made.
I’ve worked in the telecommunications industry, and years ago came across the TM Forum’s standard information / data model. They also were very clear and precise, but called the entity representing product types the “Product Specification” entity. So who is right? All models arguably have merit, and I don’t want to make a ruling, but to differentiate, my light-weight model is as follows:

[image: image18.emf]productCode

productDescription

recommendedRetailPrice

effectivePeriod

ProductType

productID

ProductItem

1

0..*

classification

For Acme Air, Product type would have three entries, and Product Item would have 900.
6.1.2 Goods and Services
Len Silverston’s Product model distinguishes between physical, tangible goods (e.g. an air conditioner), and intangible services (e.g. the installation, or servicing, of the air conditioner). This light-weight model is extended:

[image: image19.emf]productCode

productDescription

recommendedRetailPrice

effectivePeriod

ProductType

productID

ProductItem

1

0..*

classification

GoodsType ServicesType

GoodsItem ServicesItem

If we look at Acme Air, we started with three product types. But Acme Air also sells two services – the installation of their air conditioners, and the servicing of those air conditioners. We now have five product types.

What this model is saying is that one product type can be either one goods type (e.g. Acme Air’s evaporative cooler), or one services type (e.g. servicing). That might be enough for some scenarios, but is not the way the model is documented in this document’s Dictionary, because if we look at a more complex scenario, we need more flexibility. For example, a telecommunications company might have the following amongst its range of product types:
· Mobile Phone XYZ: Comprised of one mobile phone handset (a goods type), a battery charger (another goods type), a missed-call answering facility (a service type), and 12 months international roaming (another service type).

· Basic Home Entertainment Pack: Comprised of one set-top-box (a goods type), and access to a library of golden-oldies movies (a service type).
· New Home Starters Pack: Comprised of two Mobile Phone XYZ product types plus one Basic Home Entertainment Pack product type.
The first two product types are each made up from multiple goods types and services types. The third product type is a package made up of other product types. A model to support this diversity follows.

[image: image20.emf]productCode

productDescription

recommendedRetailPrice

effectivePeriod

ProductType

GoodsType ServicesType

quantity

ProductGoodsComponent

quantity

ProductServicesComponent

quantity

ProductSubproductComponent

1

0..*

goods classification

1

0..*

services classification

1

0..*

contains

1

0..*

contains

1

0..*

contains

1

0..*

subproduct classification

productID

ProductItem

1

0..*

classification

GoodsItem

ServicesItem

0..1

0..*

contains

0..1

0..*

contains

0..1 0..*

contains

A more complete description of this model’s entities is in the Dictionary, but in summary

· A product item can be made up from one or more tangible goods items and/or one or more intangible services items and/or one or more other product items.

· Similarly, a product type can be made up from one or more tangible goods types and/or one or more intangible services types and/or one or more other product types.

· It is to be noted that one goods type (e.g. a type of set-top-box) can be included in the construction of multiple product types. Similarly, service types can be used again and again in the construction of varying product types. And of course, these flexibly constructed product types can themselves be re-packaged again and again to create bundled product types.

That’s a lot of flexibility for constructing a product catalogue.
7 Pattern Group #4: Off-the-shelf subject areas

This group of data model patterns represent software constructs that are typically purchased as off-the-shelf software components. For example, one represents data constructs behind Geographic Information System (GIS) software for mapping items to a position on the earth’s surface. You could develop your own GIS, but for most of us, this facility would be purchased rather than home-built. Similarly, document management systems and accounting packages are likely to be simply purchased. The reason for including them in a high-level data model is to (1) portray some common aspects likely to be found in these off-the-shelf software packages, and (2) to allow their functionality to be included in an enterprise-wide view of the organisation’s data.
Each of these subject areas is only briefly described below.
7.1 Pattern: Location

In the wildfire emergency response scenario, recording data about locations is vital. What is the point at which a fire started? What line on a map represents the current fire front? What area has already been burned, and based on fire behaviour predictions, what are is likely to be burned in the near future?

The Open Geospatial Consortium (OGC) has rich definitions for the structuring of data about geospatial locations. However, the following model may be a sufficient approximation of location data structures for top-down enterprise modelling.
[image: image21.emf]proximityType

proximityDescription

GeospatialExplicitProximity

getImplicitProximity(in otherLocation : Geometry)

effectivePeriod

Geometry

geospatialObjectTypeCode

geospatialObjectTypeDescription

GeospatialObjectType

locationID

locationDescription

GeospatialObject

Line

Point

Polygon

0..1

0..*

delegation

1

0..*

classification

Note: A number of the components

in the "Location" subject area are

a logical representation of much

of the functionality that might be

expected to be implemented in a

geospatial information system (GIS).

Geospatial Object Types are

approximately equivalent to

GIS "layers" (roads, rivers,

local government areas, etc.)

1

0..*

participant1

1

0..*

participant2

Geospatail Explicit Proximities are a

declaration of the relationship between

a pair of Geospatial Objects e.g.

"The airport is about 5 miles outside

of the town".

Compare this with dynamically

computed proximities provided as an

operation against the Geometry class.

flatIdentifier

floorIdentifier

propertyName

locationDescription

streetNumber

streetName

town

state

postcode

country

PhysicalAddress

0..1

0..*

address-based locator

A Geospatial Object may

have its location described

by:

-a physical address

(e.g. "1 Main St")

(&/or)

-one or several Geometry

instances (e.g. a property

shape, & its entry point)

NationalPark

GeopoliticalZone

Subclasses included

as examples only

Note that there is a separation of concerns between the “geometry” entity which manages positioning of the location on a map, and the “geospatial object” entity which records structured data (attributes and relationships) for the various types of mapped objects.
7.2 Pattern: Document

Within the context of a business information model, this pattern is a placeholder for what might be implemented as a document management system. Hay’s “Data Model Patterns” elaborates on the concept.
[image: image22.emf]documentReference

effectivePeriod

Document

documentFormatCode

documentFormatDescription

DocumentFormat

effectivePeriod

DocumentToDocumentRelationship

docToDocRelationshipTypeCode

docToDocRelationshipTypeDescription

participant1Role

participant2Role

DocumentToDocumentRelationshipType

documentTypeCode

documentTypeDescription

DocumentType

electronicDocumentLocation

embeddedObject

ElectronicDocument

physicalDocumentLocation

PhysicalDocument

StructuredElectronicDocument

UnstructuredElectronicDocument

0..1

0..*

subclassification

1

0..*

classification

1

0..*

participant1

1

0..*

participant2

1

0..*

classification

agreementReference

effectivePeriod

Agreement

0..*

0..*

agreement documentation

flatIdentifier

floorIdentifier

propertyName

locationDescription

streetNumber

streetName

town

state

postcode

country

PhysicalAddress

0..1

0..*

storage address

Note: The "Document" subject area

is a logical representation of much

of the functionality that might be

expected to be implemented in a

document management system.

Examples could include:

-Containment

-Succession (old version

replaced by new)

-Cross-reference

Examples could include:

-XML, CSV, MS Excel, ... (Structured)

-PDF, MS Word, JPG, ... (Unstructured)

Note that, similar to email

attachments, a "document" can

be attached to almost anything. 1

0..*

classification

As noted in the section on agreements, the document entity is responsible for managing storage of documents, be they paper-based or electronic. Electronic documents in turn may be unstructured (e.g. a smart phone video clip) or contain structured, machine-readable information (e.g. in an XML document).

Documents can be linked to associated documents e.g. one document may be the updated replacement for the now-obsolete version, or one document may explicitly cross-reference another.
7.3 Pattern: Account

Within the context of a business information model, this pattern is a placeholder for what might be implemented as an accounting package. David Hay and Len Silverston offer multiple versions across their books. The model below is a light-weight simplification that may be a sufficient framework for high-level modelling.
[image: image23.emf]accountNumber

accountName

accountBalance

Account

AccountPayable

AccountReceivable

effectivePeriod

Party

partyRoleID

status

effectivePeriod

PartyRole

1

0..*

fulfilment

participationType

effectivePeriod

AccountParticipation

1

0..*

participation

1

0..*

participation

1

0..*

participation

{OR}

accountTypeCode

accountTypeName

accountTypeDescription

AccountType

1

0..*

classification

0..1 0..*

hierarchy

0..1

0..*

hierarchy

transactionReference

transactionEffectiveDate

transactionRecordedDate

transactionComment

transactionAmount

AccountingTransaction

accountingTransactionTypeCode

accountingTransactionTypeName

accountingTransactionTypeDescription

AccountingTransactionType

1

0..*

classification

allocationAmount

AccountingEntry

1

0..*

allocation

1

2..*

allocation

0..1

0..*

cross-reference

sequenceNumber

transactionItemDescription

transactionItemEffectivePeriod

transactionItemAmount

AccountingTransactionItem

1

0..*

details

The "Account" domain logically represents

the data structures typically found in an

accounting package. As such, much of the

detailed model is not portrayed here. The

Account-related entities merely represent

core concepts in the subject area.

Examples of Accounting Types

and their hierarchies might

include an Asset account,

subtyped as Accounts Payable.

Examples of Accounting

Transactions might include:

-an Invoice issued

-a payment received

The multiplicity

assumes double-entry

accounting.

8 Pattern Group #5: Utility patterns

The preceding patterns focus on what I have labelled the 9 pillars of top-down big-picture modelling. They represent business concepts that non-technical people frequently speak about, so they are business-centric. It is important to note that they are also IT-centric in that they most certainly can be implemented. These data model patterns are very effective at bridging the two worlds of business and IT.

There are also what I call “Utility” patterns. One example is for Units-of-Measure measure (kilometres and miles, kilograms and tons, litres and gallons …), and their conversion routines. The business may want to know we can handle units-of-measure, but probably don’t care how we do it.

One pattern that does get the attention of the business is the “Classification” pattern, which represents the code-&-description reference data sets typically encountered in Reference Data Management practices. Believe me, the business is interested in its code sets. It is just typically less interested in some of the elegant implementation aspects of this pattern. Often it is enough to let them know of the flexibility offered by this pattern, and they are satisfied. Nonetheless, a somewhat technical explanation of this pattern follows.
8.1 Pattern: Classification

The “Classification” entity is used to provide a generic and very flexible way of classifying “types” of things. For example, a commercial customer might be classified according to Australian & New Zealand Standard Industry Codes, some wildfires may be classified according to size/severity, employees may be classified according to formal competencies, and so on.

Silverston & Agnew’s “The Data Model Resource Book, Volume 3: Universal Patterns For Data Modeling” presents a number of pattern variations in the chapter titled, “Types and Categories: The Classification of Data”. The model below is a light-weight simplification that also reflects some of my own adaptations. It may be a sufficient framework for high-level modelling.
[image: image24.emf]classificationCode

classificationDescription

displaySequence

ClassificationCode

discreteValue

discreteUOM

DiscreteValueClassification

rangeStartValue

rangeStartBreakRule

rangeEndValue

rangeEndBreakRule

rangeUOM

RangeClassification

classificationSchemeCode

classificationSchemeDescription

ClassificationScheme

1

1..*

containment

ClassificationCodeHierarchy

1

0..*

parent

1

0..*

child

ClassificationSchemeAllowableHierarchy

1

0..*

parent

1

0..*

child

1

0..*

constraint

The Classification pattern provides a

generic utility "code & description" (i.e.

"reference") facility that can be applied

to any of the other patterns.

effectivePeriod

Party

0..1

0..*

reference set management

There are a number of subtle design aspects that offer significant flexibility. Features include the ability to:

· Record not just “code-&-description” data, but also specific values or ranges. One common use of such a feature is the rating of cyclones / hurricanes / tornadoes where a level 3 might represent one range of wind speeds, and a level 4 another range.

· Record interrelationships between code sets e.g. for a vehicles, relationships between Make and Model.
9 Relationships between the 9-pillar Patterns

The patterns don’t just exist in isolation; they have inter-relationships. We have already looked at the synergy between Events and Tasks, between Party Roles and Agreements, and between Tasks and their assigned Resources, Parties and Party Roles.
Let’s step back and look at some examples from real-world scenarios, starting with the buying and selling of real estate. In this scenario, the business focused on only some of the 9 pillars. They had parties in roles (buyers, banks, guarantors, real estate agents …) who signed agreements that were filed as documents (purchase contracts, mortgages, loan guarantees …). The agreement often referenced resources (typically the real estate being purchased, but maybe a some other form of security), and some of these resources (especially the real estate) had fixed locations.
[image: image28.emf]Party &

Role

Event

Account

Location

Storable

object /

document

Agreement

Task

Product

participates in ,

signatory to, ...

sited

at

archived

at

associated

with

copy

filed

as

used as basis

for analysis in

constrained

by

Resource

/ Asset

generates analysis

results held as

Another real-world scenario was for mining of natural resources. They, too, had parties entering into agreements, but the parties were mining companies and land owners, and the agreements included exploration licences and extraction permits. They extended the “Document” pattern which handles storage of physical documents to allow them to manage the storage of physical samples of rock. They also extended the normal point / line / polygon responsibilities of the Location pattern to incorporate 3-dimensional objects, across time.

Over the development of several such high-level frameworks, a few relationships began to reappear. The following diagram captures some of the most common reusable relationships.

[image: image25.emf]Party &

Role

Event

Account

Location

Document

Agreement

Task

Product

based at,

now at, ...

participates in ,

signatory to, ...

occurs

at

occurs

at

triggers

references

assigned

to

sited

at

archived

at

responsible

for

associated

with

copy

filed

as

generates

transactions

for

references

relates

to

references

records

evidence

of

manages,

owns, ...

(or "is")

associated

with

constrained

by

creates

triggers,

constrains

results

in

Resource

/ Asset

These relationships between pattern components have not been included in this document of foundational data model patterns. The requirements vary between organisations. Considerations for your requirements may include discussion on the following topics:

· Are the relationships between two patterns (e.g. Document and Party) one-to-one, one-to-many, or many-to-many? In a relational implementation, the many-to-many relationships will require a resolution entity.
· Are the relationships well defined (e.g. as in the model’s explicit relationships between Event and Specific Task), or are they relatively dynamic (and hence perhaps better managed by a generic relationships entity, with a corresponding relationship type entity)? An example of a dynamically typed relationships is modelled in the Party domain for managing party-to-party relationships. This style can be applied across domains.

· Does the relationship need to record the period of time when it was deemed to be active? If so, the resolution entity may need an effective period attribute.

10 Dictionary of Definitions for the Entity Types

10.1 Account

Description

Each instance in this class represents an account within the company’s financial ledgers (debtors, creditors, general …).

The responsibilities for this class are expected to be physically realised in a commercial-off-the-shelf accounting package that may incorporate additional attributes. However, the concept of an “account”, and its core attributes, are documented in this logical model as it is fundamental to business.

This class is subclassed to reflect some indicative primary types of accounts, in particular Accounts Payable accounts as used to manage customer balances.

Associations

· Each Account must be classified by one Account Type.

· Each Account may be the consolidation of one or more sub-Accounts.

· Each Account may be a sub-account for one ‘parent’ consolidation Account.

· Each Account may involve one or more parties or party roles as Account Participations.

· Each Account may have adjustments to its balance posted via one or more Accounting Entry(s).

Attributes

	Attribute Name
	Comments

	Account Number
	Ledger account number.

	Account Name
	Ledger account name.

	Account Balance
	Ledger account balance.

10.1.1 Account / Account Payable

This class is a subclass of Account, provided merely as an example of specialised types of accounts. It represents money owed by a business to its suppliers.
Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.1.2 Account / Account Receivable

This class is a subclass of Account, provided merely as an example of specialised types of accounts. It represents money owed to a business to its customers.
Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.2 Account Participation

Description

Each Account may have many participants e.g. an account may have a primary account holder, one or more secondary account holders, maybe a guarantor, and so on. Conversely, each Party and/or Party Role may be a participant in one or more accounts e.g. a person who is responsible for the accounts related to several properties he/she owns, plus the account for another property where they are an owner/occupier.

Each instance in this class represents the participation relationship between one Account, and one Party or Party Role. This relationship may be further classified by a Participation Type e.g. to classify the Party (or Party Role) participating in the Account as fulfilling a contextual role such as “Primary”, “Secondary”, “Guarantor” …

Associations

· Each Account Participation must be for one Account.

· Each Account Participation must identify one Party (or Party Role) as a participant.
Attributes

	Attribute Name
	Comments

	Participation Type
	Classification of the type of participation e.g. “Secondary Account Holder”.

	Effective Period
	Period during which the participation is active.

10.3 Account Type
Description

Each instance in this class defines one classification for Accounts. For example, types of accounts might include:

· Asset/Cash accounts.

· Asset/Accounts Receivable accounts.

· Liability/Accounts Payable accounts.

· Expense/Labour accounts.

This class has a self-referencing association that enables a hierarchy of types. The Account class that is "typed" by entries in this class is itself a superclass that is also typed by its subclasses. It is suggested that this class manage all type definitions, and that the inheritance mechanism be used as a supplementary specification where the static specialisation of attributes and/or associations is required.
Associations

· Each Account Type may be the classification for one or more Accounts.

· Each Account Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Account Types.

· Each Account Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Account Type.

Attributes

	Attribute Name
	Comments

	Account Type Code
	Code representing the classification e.g. maybe "AR" might be the code representing the “Accounts Receivable” type of Account.

	Account Type Name
	Brief textual description for the classification e.g. “Accounts Receivable" might be the name of an account type used to classify monies owed to the organisation by customers.

	Account Type Description
	Full textual description for the classification e.g. “Monies owed to the organisation by its debtors”.

10.4 Accounting Entry
Description

For each discrete Accounting Transaction (see the associated Accounting Transaction class), the total transaction amount may be allocated against several Accounts. Each instance in this class represents one account allocation of money, from an Accounting Transaction, to an Account.

Note that when using double-entry accounting, there must be at least two accounting entries, one for debits and one for credits, for each Accounting Transaction.

Note also that an entry may be cross-referenced against one or several other entries e.g. when a payment amount is matched against an invoice amount.

Associations

· Each Accounting Entry must identify one Accounting Transaction whose whole or partial amount is to be allocated.

· Each Accounting Entry must record the allocation of an amount against one Account.

· Each Accounting Entry may be cross-referenced to one earlier Accounting Entry.

· Each Accounting Entry may be cross-referenced by one or more subsequent Accounting Entry(s).

Attributes

	Attribute Name
	Comments

	Allocation Amount
	Amount of the total transaction amount allocated to the nominated Account.

10.5 Accounting Transaction

Description

Each instance in this class represents one accounting transaction such as an invoice issued or a payment received.

Note that the single amount from this transaction may be broken down into one or a set of debit amounts, and one or a set of credit amounts, for posting to accounts – see the associated Accounting Entry class.
Associations

· Each Account Transaction must be classified by one Account Transaction Type.

· Each Accounting Transaction must (if using double entry accounting) have the allocation of its amount defined by two or more Accounting Entry(s).

· Each Accounting Transaction may contain one or more Accounting Transaction Items.

Attributes

	Attribute Name
	Comments

	Transaction Reference
	Optional reference code e.g. an Invoice Number.

	Transaction Effective Date
	Date the transaction is deemed to be effective, not necessarily the date the transaction was recorded in a computer system.

	Transaction Recorded Date
	Date the transaction was entered into a computer system (compare with the Transaction Effective Date).

	Transaction Comment
	Textual notes for the transaction (Optional)

	Transaction Amount
	The Transaction Amount records the total value of one transaction. Note that it may be broken into several smaller amounts and allocated to separate accounts via the Accounting Entry class.

10.6 Accounting Transaction Item

Description

Each Accounting Transaction may contain many “items”. For example, an accounting transaction for a customer invoice may contain many invoice lines, each being an itemised charge as it relates to a discrete product purchase. Similarly, a payment might itemise the particulars of what is being paid. Each instance in this class represents one such item.

Associations

· Each Accounting Transaction Item must be contained within one Accounting Transaction.

Attributes

	Attribute Name
	Comments

	Sequence Number
	A number to control the display ordering of the items within the containing Accounting Transaction.

	Transaction Item Description
	Textual description of the item.

	Transaction Item Effective Period
	Period to which this item applies.

	Transaction Item Amount
	The itemised amount.

10.7 Accounting Transaction Type

Description

Each instance in this class defines one classification for Accounting Transactions. An example might be an “Invoice” issued, a “Payment” received, or “Deprecation” against an asset.

Associations

· Each Accounting Transaction Type may be the classification for one or more Accounting Transactions.

Attributes

	Attribute Name
	Comments

	Accounting Transaction Type Code
	Code representing the classification e.g. “DEP” for depreciation.

	Accounting Transaction Type Name
	Brief textual description for the classification e.g. “Depreciation”.

	Accounting Transaction Type Description
	Full textual description for the classification e.g. “Depreciation of a corporate asset”.

10.8 Address

Description

Each address records one point of contact for one or several parties. For example, one physical address (street number and name, town, postcode, etc.) may be nominated as the work address by several individuals.

Further, each address may be used in different ways to deliver different services. For example, it may be the work address for one (or several) staff, but may also be the postal address for the client company.

Types of addresses that may be recorded include physical addresses, postal addresses (“PO Box 123, …”), phone numbers, and e-mail addresses – refer to the subclasses.

Associations

· Each Address may record the contact point details for one or more Address Services.

Attributes

	Attribute Name
	Comments

	Address Display String
	This optional textual string for the address may hold an address display string constructed from multiple elements in the subclasses.

	Effective Period
	Record of the time period for which this is a valid address. For example, it may indicate that an address is no longer to be used, but may be retained as a record of the location to which past physical deliveries were made.

10.8.1 Address / Email Address

Description

This class is a subclass of address. It holds details of an e-mail address.

Attributes

	Attribute Name
	Comments

	Email Address String
	The string for an email address e.g. “fred@acme.com.au”

10.8.2 Address / Phone Number

Description

This class is a subclass of address. It holds details of a phone number.

(Note that it may be used to contact a standard telephone handset, a fax machine, a pager, etc. – refer to the related Address Service Type class classifying the associated Address Service class.)

Attributes

	Attribute Name
	Comments

	Country Prefix
	Country code e.g. “61” for Australia.

	Area Prefix
	Subscriber Trunk Dialling code e.g. “2” for a number in Sydney, Australia.

	Local Number
	Number dialled from within the same exchange area e.g. “98765432”

10.8.3 Address / Physical Address

Description

This class is a subclass of address. It holds details of a physical property e.g. “123 Main Street, Black Stump, VIC 9876, Australia”.

(Note that it may be used as a residential address, a postal address, a business address, etc. – refer to the related Address Service class.)

Associations

· Each Physical Address may record the address details for one or more Geospatial Objects.

· Each Physical Address may define the location defined for one associated Physical Document.

Attributes

	Attribute Name
	Comments

	Flat Identifier
	(Optional) e.g. “Flat 2”, “Unit 3”, “Shop 4”, etc.

	Floor Identifier
	(Optional) e.g. “Ground Floor”, “Mezzanine Level”, etc.

	Property Name
	(Optional) e.g. “Acme Towers”

	Location Description
	(Optional) e.g. “Rear of”, “”123 metres south of”, etc.

	Street Number
	e.g. “123”, “123A”, “123 - 125”, “Lot 123”, etc.

	Street Name
	e.g. “Main Street”, “Station Road”, “High Street West”, etc.

	Town
	e.g. “Black Stump”

	State
	e.g. “VIC”, “NT”, etc.

	Postcode
	e.g. “3456”

	Country
	e.g. “Australia”

10.8.4 Address / Postal Address

Description

This class is a subclass of address. It holds details of a postal property e.g. “PO Box 123, Black Stump, VIC 9876, Australia”.

(Note that, while physical addresses may be used to provide postal services, postal addresses cannot be used for (say) a residential address!)

Attributes

	Attribute Name
	Comments

	Postal Delivery Description
	e.g. “PO Box 123”, “RSD” (road side delivery), etc. (Optional – not required if using either the DPID of DX)

	Town
	e.g. “Black Stump”

	State
	e.g. “VIC”, “NT”, etc.

	Postcode
	e.g. “3456”

	Country
	e.g. “Australia”

	DPID
	DPID (Delivery Point Identifier) – a barcode for Australian postal delivery. An alternative to the traditional descriptive attributes above.

	DX
	DX (Document exchange) number. An alternative postal address mechanism (used in conjunction with a Town attribute).

10.9 Address Service

Description

Each party may have several addresses e.g. a person’s physical home address, physical work address, maybe a different postal address, and perhaps a couple of mobile phones.

Conversely, each address may be referenced by several parties e.g. one phone number may be nominated as the home phone for several people, and the business phone for a home business.

Each instance in this class records one party’s association with one address for a given service type (refer to the Address Service Type class), and intended usage (refer to the Address Usage Type class) e.g. Fred Smith’s use of phone number 1234-5678 as a facsimile service for business purposes.

Associations

· Each Address Service must define address type-&-usage for one Party.

· Each Address Service must be linked to its one Address that defines the contact details.

· Each Address Service may be classified as to its usage by one Address Usage Type.

Attributes

	Attribute Name
	Comments

	Effective Period
	Period during which this record was effective.

10.10 Address Service Type

Description

Each instance of this class is used as a classification of the type of service offered by an address. These types have a strong correlation with the subclasses of the Address class. Examples include email address, physical address, and postal address. Also included are classifications for phone numbers (a subclass of Address), but with finer-grained classification according to whether the phone number relates to a fixed phone, a mobile phone, a pager …
Associations

· Each Address Service Type may classify the type of service mechanism applicable to one or more Address Usage Types.

Attributes

	Attribute Name
	Comments

	Address Service Type Code
	Brief code representing the classification e.g. “MOB” for a mobile phone.

	Address Service Type Description
	Full textual description for the classification e.g. “Mobile phone”.

10.11 Address Usage Type

Description

Each instance in this class describes a classification for intended usage of a service that is available at an address. For example:

· Where the Address Service Type is “Mobile Phone”, its Usage may be classified as being:

· Home

· Business

· Where the Address Service Type is “Physical Address”, its Usage may be classified as being:

· Residential address

· Work address

· Postal address

Note that the type of usage offered by an address of a given service type must be constrained by that address service type. For example, an email address cannot be used as a residential address, nor can a physical address be used for fax!

Associations

· Each Address Usage Type may classify the type of usage for one or more Address Services.

· Each Address Usage Type must be constrained to the type of service mechanism applicable via one Address Service Type.

Attributes

	Attribute Name
	Comments

	Address Usage Type Code
	Code representing the classification e.g. “POST” for postal usage.

	Address Usage Type Description
	Full textual description for the classification e.g. “Postal delivery service”.

10.12 Agreement

Description

Each instance in this class represents one agreement between two or more parties. The agreements can be more formal agreements such as legally binding contracts, or less formal such as arrangements made for the time a company representative is to visit a client’s premises.

The agreement class could have had several subclasses; only one is supplied, as an example of types of agreements. It must be noted that some agreements do not require any specialisation and hence may be treated as a generic agreement (with an agreement type – see the associated class). Where agreements do not require any specialisation but do require classification into various types of agreement, the Agreement Type class is expected to provide such a facility.

Associations

· Each Agreement must be classified by one Agreement Type.

· Each Agreement may have documentary evidence of the agreement recorded in one or more Documents.

· Each Agreement may contain one or more Agreement Items.

· Each Agreement may record parties and/or party roles as a participating in the agreement via one or more Agreement Participations.

· Each Agreement may be the first of two participants in one or more Agreement To Agreement Relationships with other agreements.

· Each Agreement may be the second of two participants in one or more Agreement To Agreement Relationships with other agreements.

Attributes

	Attribute Name
	Comments

	Agreement Reference
	Identifier for the agreement e.g. a contract number, or a quotation reference number.

	Effective Period
	Period during which this record was effective.

10.12.1 Agreement / Employment Contract
Description

This class is a subclass of Agreement. This and other subclasses may be merely representative of types of agreements, to aid communication, and may not require specialised attributes or associations.

Each instance in this class records details for engagement of an employee.

Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.13 Agreement Item

Description

Each instance in this class represents one item in the associated Agreement. For example, where the Agreement is a service agreement, this class may manage the individual products referenced in the service agreement. Similarly, where the Agreement is a work order, the Agreement Items may detail individual agreed tasks.

Note that this class may be subclassed where the varying types of agreement items require specialised attributes and/or associations.

Associations

· Each Agreement Item must be contained within one Agreement.

Attributes

	Attribute Name
	Comments

	Sequence Number
	A number to control the display ordering of the items within the containing Agreement.

10.14 Agreement Participation
Description

Each Agreement may have many participants e.g. an employment contract may involve the new employee, plus a representative of the employer.
Conversely, each Party and/or Role may be a participant in one or more agreements e.g. a HR person who is the company’s representative for several employment contracts.

Each instance in this class represents the participation relationship between one Agreement, and one Party or Party Role. This relationship may be further classified by a Contextual Role Type e.g. to classify the Party (or Party Role) participating in the Agreement as fulfilling a contextual role such as “Witness”.
Associations

· Each Agreement Participation must define participation of either a party or party role in one Agreement.

· Each Agreement Participation must identify as a participant in an agreement either one Party or one Party Role.

Attributes

	Attribute Name
	Comments

	Contextual Role Type
	Classification of the type of participation e.g. “Witness”.

	Effective Period
	Period during which the participation is active.

10.15 Agreement To Agreement Relationship

Each instance in this class represents one relationship between a pair of Agreements. For example, one agreement may be the replacement version of another, linked via a “succession” relationship, or one agreement may be the overarching agreement with the second agreement being “contained” within it.

Associations

· Each Agreement To Agreement Relationship must be classified by one Agreement To Agreement Relationship Type.

· Each Agreement To Agreement Relationship must nominate one Agreement as the first of two agreements participating in the relationship.

· Each Agreement To Agreement Relationship must nominate one Agreement as the second of two agreements participating in the relationship.

Attributes

	Attribute Name
	Comments

	Effective Period
	Time period during which this instance is to be considered active.

10.16 Agreement To Agreement Relationship Type

Description

Each instance in this class describes a classification of agreement to agreement relationships. Examples might include:

· Containment

· Replacement

· Trigger (e.g. an Opportunity may trigger a Contract)

Associations

· Each Agreement To Agreement Relationship Type may be the classification for one or more Agreement To Agreement Relationships.

Attributes

	Attribute Name
	Comments

	Agreement to Agreement Relationship Type Code
	Brief code representing the classification e.g. “REPL” for replacement.

	Agreement to Agreement Relationship Type Description
	Full textual description for the classification e.g. “Replacement”.

	Participant 1 Role
	e.g. “Predecessor”

	Participant 2 Role
	e.g. “Successor”

10.17 Agreement Type

Description

Each instance in this class describes a classification of agreements. Fundamental classification of Agreement types is achieved by subclassing of the Agreement class. This class offers classification of generic agreements that may not require subclassing. It also offers further classification of Agreement subclass instances.

Associations

· Each Agreement Type may be the classification for one or more Agreements.

· Each Agreement Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Agreement Types.

· Each Agreement Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Agreement Type.

Attributes

	Attribute Name
	Comments

	Agreement Type Code
	Brief code representing the classification e.g. “SA” for Service Agreement.

	Agreement Type Description
	Full textual description for the classification e.g. “Agreement between the company and a customer for provision of services”.

10.18 Calendar

Description

In many cases, an organisation uses a default calendar, and all tasks are assumed to be scheduled within that calendar. For example, their calendar may exclude work on weekends and national & state public holidays. It is not uncommon for this default calendar to be implied rather than explicitly declared within some contexts.
In other cases, certain projects may use their own specific calendars. In such cases, the details of the calendar must be identified. Details of a calendar structure are not included here as this class is primarily a placeholder for business appreciation of the role of a calendar. However, if a bespoke calendar facility is to be developed and implemented, its data structure may be inferred from similar functionality in desktop or smartphone applications.
Associations

· Each Calendar may define scheduling possibilities for one or more Specific Tasks.

Attributes

Details of most attributes are not specified, but could include:

· Calendar Name to identify a calendar instance.

· Standard daily start and finish times.

· Standard days of work.

· Recognised holidays.

10.19 Classification Code

Description

Many objects in the enterprise may need to be classified. For example, a party may be classified according to some standard industry code, or by some internal market segmentation.

Each instance in this class defines one classification within one classification scheme (refer to the related Classification Scheme class). For example, there may be classification codes for “Ford” and “Toyota” within the “Make” classification scheme, and classification codes for “LandCruiser” and “Corolla” within the “Model” classification scheme. (Note that the “LandCruiser” model may itself be linked to the “Toyota” make using the Classification Code Hierarchy class.)
While this class may be subclassed where there are measurements associated with the classification, simple classifications require nothing more than entries managed by this (concrete) class.

Associations

· Each Classification Code must be contained within the code set defined by one Classification Scheme.

· Each Classification Code may be the ‘parent’ code in one or more Classification Code Hierarchies involving other classification codes.

· Each Classification Code may be the ‘child code in one or more Classification Code Hierarchies involving other classification codes.

Attributes

	Attribute Name
	Comments

	Classification Code
	Brief code representing the classification e.g. “TOY” for Toyota.

	Classification Description
	Full textual description for the classification e.g. “Toyota”.

	Display Sequence
	Control for display sequence of all members in a common classification scheme.

10.19.1 Classification Code / Discrete Value Classification

Description

This is a subclass of Classification Code, intended to be used when a simple classification code is required to be further defined with a discrete value. For example, in Australia we mighty define a “Standard” house door with a width of 820mm, a “Narrow” door with a width of 720mm, and a “Wide” door with a width of 920mm.

Each instance in this class defines the one numeric value associated with one code requiring nomination of a discrete numeric value.
Attributes

	Attribute Name
	Comments

	Discrete Value
	Specific numeric value associated with a code set e.g. 820 for a door with a width of 820 millimetres.

	Discrete UOM
	Unit-of-Measure (e.g. “Millimetre”) for the above metric. (Optional)

10.19.2 Classification Code / Range Classification

Description

This is a subclass of Classification Code, intended to be used when a classification is required to group a range of measures used elsewhere. For example, a classification of “Adjacent” classifying the availability of water utility services passing a property might be further qualified as relating to distances up to 10 metres, while a separate instance described as “Nearby” might be further qualified as relating to distances greater than 10 metres but up to 25 metres.

Each instance in this class defines the numeric values defining the range limits for a given classification code.
Attributes

	Attribute Name
	Comments

	Range Start Value & Break Rule;

Range End Value & Break Rule
	A set of 4 attributes that can be combined to define number ranges. For example, a particular code may represent a range where values are “greater than” (the Range Start Break Rule) “100” (the Range Start Value) and “less than or equal to” (the Range End Break Rule) “500” (the Range End Value).

	Range UOM
	Unit-of-Measure (e.g. “Kilogram”, “Metre”, “Kilometres/Hour”) for the above metrics. (Optional)

10.20 Classification Code Hierarchy
Description

Some classification codes are interdependent on each other. For example, a car’s classification code of Mustang (as a Model) may be a sub-classification of Ford (as a Make). In this case, the instance in this class would link the Make of Ford as the "parent" scheme with the Model of Mustang as the "child" scheme.

Sometimes there can be a sub-classification hierarchy within one code set. For example, in Australia the car’s Model classification scheme may have Commodore as a model, but sub-classify this into Commodore Executive, Commodore Vacationer, etc. In this case, an instance in this class would link Commodore (a Model) as the "parent" and Commodore Vacationer as the "child" (still within the Model scheme).
Each instance in this class defines the hierarchical relationship between a pair of Classification Code instances.

Associations

· Each Classification Code Hierarchy must be constrained by the definition of an allowable type of hierarchy as provided by one Classification Scheme Allowable Hierarchy.

· Each Classification Code Hierarchy must nominate one ‘parent’ Classification Code as the first of two codes participating in the hierarchy.

· Each Classification Code Hierarchy must nominate one ‘child’ Classification Code as the second of two codes participating in the hierarchy.

Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.21 Classification Scheme

Description

Across the enterprise, many classification schemes may exist. Examples could possibly include:

· Classification of customers by industry code (retail, manufacturing, …)

· Classification of customers by sales area

· Classification of meters and valves on a factory floor by size, flow rate ranges, …

· Classification of vehicles by make, model, etc.

In the above list, “Industry Code”, “Sales Area”, the factory equipment’s “Size” and “Flow Rate”, and the vehicle’s “Make” and “Model” are examples of classification schemes. Each instance in this class represents one such scheme.

Note that schemes may be sub-classified by yet other schemes. For example, a Make scheme may be sub-classified by Model. These allowable relationships between schemes are defined in the associated Classification Scheme Allowable Hierarchy class.

Associations

· Each Classification Scheme must be the container for the code set enumerated by one or more Classification Codes.

· Each Classification Scheme may be the ‘parent’ scheme in one or more Classification Scheme Allowable Hierarchies involving other classification schemes.

· Each Classification Scheme may be the ‘child scheme in one or more Classification Scheme Allowable Hierarchies involving other classification schemes.

· Each Classification Scheme may have its enumerations managed by one Party e.g. Country Codes managed by the United Nations.

Attributes

	Attribute Name
	Comments

	Classification Scheme Code
	Brief code representing the classification e.g. “IC” for “Industry Code”.

	Classification Scheme Description
	Brief textual description for the classification e.g. “Australia & New Zealand Standard Industrial Classification”.

10.22 Classification Scheme Allowable Hierarchy
Description

Some classification codes are interdependent on each other. For example, a classification code of Mustang (as a Model) may be a sub-classification of Ford (as a Make). In this case, the instance in this class would define the Classification Scheme of Make as an allowable "parent" to the “child” Classification Scheme of Model.

Sometimes there can be a sub-classification hierarchy within one code set. For example, in Australia the Model classification scheme may have Commodore as a model, but sub-classify this into Commodore Executive, Commodore Vacationer, etc. In this case, an instance in this class would define the Classification Scheme of Make as an allowable "parent" to the “child” Classification Scheme of Make (i.e. self-referencing relationship pointing back to the same scheme).

Each instance in this class defines one allowable hierarchical relationship between pairs of Classification instances.

Associations

· Each Classification Scheme Allowable Hierarchy must nominate one ‘parent’ Classification Scheme as the first of two schemes participating in the definition of an allowable hierarchy.

· Each Classification Scheme Allowable Hierarchy must nominate one ‘child’ Classification Scheme as the second of two schemes participating in the definition of an allowable hierarchy.

· Each Classification Scheme Allowable Hierarchy may be the constraint defining an allowable type of hierarchy for one or more Classification Code Hierarchies.

Attributes

	Attribute Name
	Comments

	(none yet defined)
	

10.23 Document
Description

The enterprise may need to manage storage of electronic documents and paper documents. Each instance of this class is responsible for management of the storage of one such item.

This class has several subclasses, handling different mediums of storage (electronic, physical).

Associations

· Each Document must be classified by one Document Type.

· Each Document must be classified by one Document Format.

· Each Document may provide documentary evidence for one or more Agreements.

· Each Document may be the first of two participants in one or more Document To Document Relationships with other documents.

· Each Document may be the second of two participants in one or more Document To Document Relationships with other documents.

Attributes

	Attribute Name
	Comments

	Document Reference
	Optional identifier for the document.

	Effective Period
	Period during which this record was effective.

10.23.1 Document / Electronic Document
Description

This class is a subclass of document. Each instance represents one “document” (such as a spreadsheet, a word processing document, an image or digital photograph, a digitised voice recording, etc.) that is stored within a computer’s digital storage.

Attributes

	Attribute Name
	Comments

	Electronic Document Location
	Reference to the electronic object’s location (e.g. a URL, a drive & folder specification, …)

	(or)
	

	Embedded Object
	Copy of the original, available for viewing / processing.

10.23.1.1 Document / Electronic Document / Structured Electronic Document
Description

This class is a subclass of electronic document. Each instance represents one “document” such as a spreadsheet, a text file in XML format, or a character-delimited file that has machine-interpretable contents.

Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.23.1.2 Document / Electronic Document / Unstructured Electronic Document
Description

This class is a subclass of electronic document. Each instance represents one “document” such as a word processing document, an image or photograph, or a digitised voice recording that has no capability for automatic machine interpretation of its contents.

Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.23.2 Document / Physical Document
Description

This class is a subclass of document. Each instance represents one “document” such as a hard-copy report, a physical fax set of pages, or a physical photograph.

Associations

· Each Physical Document may have its location defined via an association with one Physical Address.

Attributes

	Attribute Name
	Comments

	Physical Document Location
	Description of the storage location of a physical document (library reference card, compactus unit / shelf / …)

(Note that this may be a derivable attribute, with values determined via the associated Physical Address class.)

10.24 Document Format
Description

Each instance in this class identifies the storage format as an aid to accessing and interpreting the stored information. Examples of formats for electronic objects might include typical file extensions (“doc”, “jpg”, “xls”, etc.). Further specification may be required e.g. a schema for a document that holds data as an XML document.

Associations

· Each Document Format may be the classification for one or more Document Types.

Attributes

	Attribute Name
	Comments

	Document Format Code
	Brief code representing the classification e.g. “CSV” for a comma-separated values file.

	Document Format Description
	Full textual description for the classification e.g. “Comma-Separated Values file”.

10.25 Document To Document Relationship
Description

Each document may relate to one or many other documents. Examples of types of relationships may include:

· Composition. For example, one word processing document may contain associated spreadsheets.

· Replacement. For example, one version of a document may be the replacement for another document or even for several documents if it is a consolidation.

· Cross-reference. For example, there may be a textual document describing a suspicious wildfire, and there may also be an associated photograph of the point-of-ignition that supplements the textual description.

Each instance of this class represents one relationship between a pair of documents, of a type as classified by the associated Document To Document Relationship Type class.

Associations

· Each Document To Document Relationship must nominate one Document as the first of two documents participating in the relationship.

· Each Document To Document Relationship must nominate one Document as the second of two documents participating in the relationship.

· Each Document To Document Relationship must be classified by one Document To Document Relationship Type.

Attributes

	Attribute Name
	Comments

	Effective Period
	Time period during which this relationship is to be considered active.

10.26 Document To Document Relationship Type
Description

Each instance in this class describes a classification of document to document relationships e.g. “Composition”, “Replacement” or “Cross-reference”.

Associations

· Each Document To Document Relationship Type may be the classification for one or more Document To Document Relationships.

Attributes

	Attribute Name
	Comments

	Document to Document Relationship Type Code
	Brief code representing the classification e.g. “COMP” for composition.

	Document to Document Relationship Type Description
	Full textual description for the classification e.g. “Composition of one component document within another aggregate document”.

	Participant 1 Role
	E.g. “container”

	Participant 2 Role
	E.g. “component”

10.27 Document Type
Description

Each instance in this class describes a classification of documents. For example, one document may be classified as an “Employment Contract”, and another as a “Service Agreement”.

Associations

· Each Document Type may be the classification for one or more Document Types.

· Each Document Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Document Types.

· Each Document Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Document Type.

Attributes

	Attribute Name
	Comments

	Document Type Code
	Brief code representing the classification e.g. “SA” for Service Agreement.

	Document Type Description
	Full textual description for the classification “Service Agreement with and a customer”.

10.28 Event

Description

There may be many types of events. For example, there are contact events such as a customer ringing and requesting information about available services, or making a complaint about an invoice.

Sometimes the event may trigger requests for action (refer to the associated Specific Task class).

Sometimes events are linked. For example, a series of customer complaints may be linked to another event such as a product defect event. Such associations can be managed via the associated Event To Event Relationship class.

The event class has several subclasses. Some subclasses are supplied as examples of types of events, while others have been defined to allow for capture of their requirements for specific attributes, operations and/or associations. Where events do not require any specialisation but do require classification into various types of events, the Event Type class is expected to provide such a facility.
Associations

· Each Event must be classified by one Event Type.

· Each Event may be the first of two participants in one or more Event To Event Relationships with other events.

· Each Event may be the second of two participants in one or more Event To Event Relationships with other events.

· Each Event may act as a trigger for initiation of work as defined by one or more Specific Tasks.

· Each Event may be created as a record of the commencement or completion of one Specific Task, where the task commencement or completion is to be treated as a noteworthy event.

Attributes

	Attribute Name
	Comments

	Event ID
	Identifier for the event.

	Event Description
	Textual description of the event (optional)

	Event Status
	Classification of the status of the event. (Optional).

Note that the allowable status values are constrained by the event type. For example, a Customer Complaint event may pass through different status states than an Occupational Health & Safety event.

	Effective Period
	Period over which the event occurred.

10.28.1 Event / Communication Event

Description

Communication Event is a subclass of event, and is only included as an example of types of events.

Each instance of this class represents one recorded communication event (a fax sent or received, a phone call made or received, etc.).

Attributes

	Attribute Name
	Comments

	(none yet supplied)
	

10.28.2 Event / Safety Incident

Description

Safety Incident is a subclass of event, and is only included as an example of types of events.

Each instance of this class represents one recorded safety incident (e.g. a work-related accident).

Attributes

	Attribute Name
	Comments

	(none yet supplied)
	

10.28.3 Event / Observation Event

Description

Observation Event is a subclass of event, and is only included as an example of types of events.

Each instance of this class represents one recorded observation (e.g. an automated weather station reading, or a forensic officer’s field observations at the point of ignition of a suspicious fire).

Attributes

	Attribute Name
	Comments

	(none yet supplied)
	

10.29 Event To Event Relationship

Description

Each event may relate to one or many other events. For example, a series of similar complaint events may be linked to another event related a product fault event. Similarly, a marketing campaign event may be linked (hopefully) to a series of contact events requesting product details from prospective clients.

Each instance of this class represents one relationship between a pair of events, of a type as classified by the associated Event To Event Relationship Type class.

Associations

· Each Event To Event Relationship must be classified by one Event To Event Relationship Type.

· Each Event To Event Relationship must nominate one Event as the first of two events participating in the relationship.

· Each Event To Event Relationship must nominate one Event as the second of two events participating in the relationship.

Attributes

	Attribute Name
	Comments

	Effective Period
	Time period during which this relationship is to be considered active.

10.30 Event To Event Relationship Type

Description

Each instance in this class describes a classification of event to event relationships e.g. a marketing campaign event may be “cross-referenced” to a related product request event.

Associations

· Each Event To Event Relationship Type may be the classification for one or more Event To Event Relationships.

Attributes

	Attribute Name
	Comments

	Event to Event Relationship Type Code
	Brief code representing the classification e.g. “XREF” for cross-reference.

	Event to Event Relationship Type Description
	Full textual description for the classification e.g. “One event cross-references another, related event”.

	Participant 1 Role
	E.g. “Primary event”. (Optional)

	Participant 2 Role
	E.g. “Associated event”. (Optional)

10.31 Event Type
Description

Each instance in this class defines one classification for Events. For example, types of events may include:

· Communication events (call centre phone calls, portal usage, …).
· Incidents (wildfire outbreak detection, an occupational health & safety accident, …).
· The raising of an “issue”.
This class has a self-referencing association that enables a hierarchy of types. The Event class that is "typed" by entries in this class is a superclass that is also typed by its subclasses. It is suggested that this class manage all type definitions, and that the inheritance mechanism be used as a supplementary specification where static specialisation of attributes and/or associations is required.
Associations

· Each Event Type may be the classification for one or more Events.

· Each Event Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Event Types.

· Each Event Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Event Type.

Attributes

	Attribute Name
	Comments

	Event Type Code
	Code representing the classification e.g. “CCC”.

	Event Type Description
	Full textual description for the classification e.g. “Incoming or outgoing phone call (a “Contact”) involving the Call Centre”.

10.32 Geometry

Description

A Geographic Information System (GIS) typically manages information for objects that have a position relative to the surface of the earth e.g.:

· Polygons such as the area covered by the base of a building or defined by a land title.

· Lines such as the definition of the position of a road or a river.

· Points such as the position where an event occurred.

The Open GIS Consortium (OGC) makes a separation between the geospatial “shape” itself (the geometry) and the facts belonging to the spatially related object. For example, a Shire Council may have a geometry defining its boundary, and displayable on a map. It also might have quite a rich collection of data, including the name of the Council, a list of all contacts within the Council, statements on intended zoning changes, and so on. These “facts” are managed by the associated Geospatial Object class and its associated classes (Party, Agreement, etc.), while this Geometry class and its associated classes are responsible for the mapping aspects.

Associations

· Each Geometry may delegate the responsibility for managing its structured data to of one Geospatial Object (and the associated classes).

Attributes

	Attribute Name
	Comments

	Effective Period
	Time period during which this map shape is to be considered active.

Operations

	Operation Name
	Comments

	Get Implicit Proximity
	This operation is noted to highlight the fact that a geometry within a Geographic Information System (GIS) will have functions to determine one geospatial object’s proximity in relation to other geospatial objects e.g. what it is contained within it, what it contains, what it shares a partial boundary with, what it partially overlaps, etc.

[See also how explicit locational relationships are recorded via the Geospatial Explicit Proximity class.]

10.32.1 Geometry / Line

Description

This class is a subclass of the Geometry class. Each instance in this class represents one line, typically as represented within a GIS.

Attributes

	Attribute Name
	Comments

	(none specified here)
	(The details of this class are expected to be the responsibility of an implementation of a GIS.)

10.32.2 Geometry / Point

Description

This class is a subclass of the Geometry class. Each instance in this class represents one point, typically as represented within a GIS.

Attributes

	Attribute Name
	Comments

	(none specified here)
	(The details of this class are expected to be the responsibility of an implementation of a GIS.)

10.32.3 Geometry / Polygon

Description

This class is a subclass of the Geometry class. Each instance in this class represents one polygon, typically as represented within a GIS.

Attributes

	Attribute Name
	Comments

	(none specified here)
	(The details of this class are expected to be the responsibility of an implementation of a GIS.)

10.33 Geospatial Explicit Proximity

Description

Objects in the associated Geospatial Object class may have no associated definitions in the Geometry class. For example, at a point in time, the geospatial objects may contain an instance for Alex’s sales region, and other objects for the real properties where Alex’s clients live within the sales region. However, it may be that their precise locations have not been recorded as Geometry objects. If the relationship for relative location between geospatial objects is to be explicitly recorded, this Geospatial Explicit Geometry class can be used to note those objects that (for example) fall within another object’s domain, or border it, or partially overlap its domain.

Conversely, if the example of Alex’s sales region and Alex’s clients is taken in the situation where their precise locations are recorded as Geometries, and their implied relative positions can be determined by the operations of the Geometry class, entries in this Explicit Proximity class may not be required.

Associations

· Each Geospatial Explicit Geometry must nominate one Geospatial Object as the first of two location objects participating in the relationship.

· Each Geospatial Explicit Geometry must nominate one Geospatial Object as the second of two location objects participating in the relationship.

Attributes

	Attribute Name
	Comments

	Proximity Type
	Examples might include:

· Complete containment of the first object within the second.

· Partial overlap between the objects.

· Sharing of a partial boundary between the objects.

· “Closeness” (see attribute below)

	Proximity Description
	An optional measurement or description further defining proximity. For example:

· Where the proximity type states that the two objects are “close”, this may record a linear measurement such as “123 metres” to further define the closeness.

· Sometimes the proximity description may give directions such as “Proceed from the first object in a northerly direction until you encounter the black stump, then turn left for another 50 metres ...”.

10.34 Geospatial Object

Description

As explained in the description for the Geometry class, each instance in this Geospatial Object class manages the information related to objects that have a geospatial representation (as managed by the Geometry class) but also have the need to manage rich sets of structured information. For example, a Shire Council may have a geometry i.e. a position which we can locate on a map. It also might have quite a rich collection of data, including the name of the Council, a list of all contacts within the Council, statements on intended zoning changes, and so on. These “facts” are managed by this Geospatial Object class and its associated classes (Party, Agreement, etc.), while the Geometry class and its associated classes are responsible for the mapping aspects.
The types of objects in this class have some similarities to the “layers” encountered in a geospatial information system (GIS). For example, a GIS might have a layer depicting customer sites, another layer for sales regions, and maybe even layers depicting geopolitical areas such as states and council wards.

This Geospatial Object class has several subclasses. Some subclasses are supplied as examples of types of geospatial object, while others have been defined to capture their requirements for specific attributes, operations and/or associations. It must be noted that some geospatial objects do not require any specialisation and hence may be treated as generic geospatial objects. Where geospatial objects do not require any specialisation but do require classification into various types of geospatial object, the Geospatial Object provides this classification.

(Note that the following subclasses are indicative only.)

Associations

· Each Geospatial Object must be classified by one Geospatial Object Type.

· Each Geospatial Object may have been delegated the responsibility for managing structured data about its spatially located object, as located via one or more Geometries.

· Each Geospatial Object may have its physical address details recorded in one Physical Address.

· Each Geospatial Object may be the first of two participants in one or more Geospatial Explicit Proximities linked to other geospatial objects.

· Each Geospatial Object may be the second of two participants in one or more Geospatial Explicit Proximities linked to other geospatial objects.

Attributes

	Attribute Name
	Comments

	Location ID
	Identifier for the geospatial object.

	Location Description
	Textual description of the geospatial object (optional)

10.34.1 Geospatial Object / Geopolitical Zone

Description

This class is a subclass of Geospatial Object, and is provided as an example. Each instance in this class represents one geopolitical zone (a county, state, shire council …).

Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.34.2 Geospatial Object / National Park

Description

This class is a subclass of Geospatial Object, and is provided as an example. Each instance in this class represents one conservation area of national significance.

Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.35 Geospatial Object Type
Description

Instances of an object on a map can be classified by shape type (e.g. point, line, or polygon – refer to the subclasses of the Geometry class). They can also be classified by the type of real-world object they represent e.g. the shape of a council ward, the shape of a parcel of real estate, the shape of roads, rivers, etc. In a Geographic Information System (GIS), these shape classifications are often referred to as “layers”. For example, a user can start with a base map, then overlay a council ward layer, then a roads layer, and so on to build up the view they wish to visualise.

While the GIS may use these classifications for its management, it may also reflect the subclass structure of the associated Geospatial Object class.

Each instance in this class represents one classification defining one type of layer.

Associations

· Each Geospatial Object Type may be the classification for one or more Geospatial Objects.

Attributes

	Attribute Name
	Comments

	Geospatial Object Type Code
	Brief code representing the classification e.g. “PARCEL” for real property parcel.

	Geospatial Object Type Description
	Full textual description for the classification e.g. “Real property parcel as defined by the land titles register”.

10.36 Goods Item

Description

Each instance in this class represents one item of tangible goods as it relates to one customer e.g. a battery charger supplied as a component of the Acme “U-Beaut” model mobile phone bought by Alex.

Associations

· Each Goods Item may be contained within one Product Item.

Attributes

	Attribute Name
	Comments

	(none specified yet)
	

10.37 Goods Type

Description

Each instance in this class represents one type of tangible goods that may be included in one or more product types. For example, a particular type of battery charger may be included in one or more product types, with the relationship between this goods type, and the product types that contain it, recorded via the Product Goods Component class.

Associations

· Each Goods Type may act as a component in product types, as defined by one or more Product Goods Components.

Attributes

	Attribute Name
	Comments

	(none specified yet)
	

10.38 Object To Task Assignment

Description

A task may have the need for many “things” to be assigned to it. For example, tomorrow’s specific task for fighting the fire front for wildfire 123 may require some specific physical resources (the fire truck with registration number ABC-213, the dozer with roof number 123, and two specific radios, identified by their asset number). The same task may require some specific parties (“We want Alex, Brook, Chis, Dan, Ed and Fran”). It may also require some parties identified by specific party roles e.g. a person “Sam” who is explicitly registered in the party role class as a dozer driver.

Conversely, any given “thing” (a physical resource, party or a party role) may be required to be assigned to many tasks. Maybe the dozer has been assigned to two fire fighting tasks. If the tasks occur at different times (today and tomorrow), maybe that’s OK. Or maybe it’s assigned to two concurrent tasks, but with an assignment percentage of 50% allocation to each, and they are in close proximity, so that’s OK, too. Or maybe there actually is a clash of demand, and a logistics officer is going to have to resolve the conflict.

Each instance in this class defines the assignment of one specific physical resource or one party or one party role, to one task.

It is to be noted that the tasks to which a physical resource, or party, or party role is assigned are subtyped. They can be specific tasks (further subtyped as either actual tasks or planned tasks), or template tasks. It is probably more likely that template tasks are assigned types of resources or parties or party roles rather than specific resources or parties or party roles (refer to the Object Type To Task Assignment class), but it is possible for a template task to have a nominated instance assigned (“Whenever we have dangerous hill-country fire breaks to be cut, use this template task, but always assign Sam as the dozer driver”).

 [Note that the model has this one class to link a task to one specific physical resource or one party or one party role. An alternative model would be to split this one class into three classes, one for assignment of tasks to physical resource, another for assignment of tasks to parties, and yet another for assignment of tasks to party roles. These three classes could then be split again two ways by explicit assignment classes for template tasks versus specific tasks. For the sake of being more concise, this class models a single generalised assignment approach.]

Associations

· Each Object To Task Assignment must define the assignment of some ‘thing’ (either a party or party role or resource) to one Task.

· Each Object To Task Assignment must identify as a ‘thing’ assigned to a task either one Party or one Party Role or one Resource.

Attributes

	Attribute Name
	Comments

	Assignment Percentage
	Percentage of the task’s duration that the nominated resource is expected to be required e.g. “Chris will only be required for 25% of his/her time.”

	Effective Period
	Period during which the assignment is active.

10.39 Object Type To Task Assignment

Description

A task may have the need for many types of “things” to be assigned to it. For example, a template task for fighting a fire front may require some physical resource types (a fire truck, a D9 dozer, and two radios). The same template task may require party types (e.g. one organisation typed as a “fire crew”). It may also require some types of party roles (e.g. a dozer driver).

Conversely, any given type of “thing” (a resource type, party type or a party role type) may be required to be assigned to many tasks. For example, the D9 dozer type of resource may be assigned to several template tasks.

Each instance in this class defines the assignment of one type of physical resource or one type of party or one type of party role, to one task.

It is to be noted that the examples above picture types of objects (resource types, party types or a party role types) being assigned to template tasks. Of course, types of things can also be assigned to specific tasks e.g. “for tomorrow’s specific task for fighting the fire front I want a diesel generator. I don’t care which one you give me, but I am logging the fact that I want one.”

[Note that the model has this one class to link a task to one resource type or one party type or one party role type. An alternative model would be to split this one class into three classes, one for assignment of tasks to resource types, another for assignment of tasks to party types, and yet another for assignment of tasks to party role types. These three classes could then be split again two ways by explicit assignment classes for template tasks versus specific tasks. For the sake of being more concise, this class models a single generalised assignment approach.]
Associations

· Each Object Type To Task Assignment must define the assignment of some ‘thing type’ (either a party type or party role type or resource type) to one Task.

· Each Object Type To Task Assignment must identify as a ‘thing type’ assigned to a task either one Party Type or one Party Role Type or one Resource Type.

Attributes

	Attribute Name
	Comments

	Quantity
	Number of resources of the nominated type that are required. (Default = 1.)

	Assignment Percentage
	Percentage of the task’s duration that the nominated resource is expected to be required e.g. “A D9 dozer will only be required for 25% of its time.”

	Effective Period
	Period during which the assignment is active.

10.40 Organisation Name

Description

An organisation may have one or several names. For example, at one point in time it may have a registered name and a trading name. Over time, it may have name changes.

Each instance holds one allowable name for an organisation.

Associations

· Each Organisation Name must be contained within one Organisation.

Attributes

	Attribute Name
	Comments

	Org Unit Name Type
	For example, “trading” or “registered”.

	Org Unit Name
	Textual display string describing one name for an organisation.

	Effective Period
	Period during which the name is active.

10.41 Party

Description

Each instance of this class holds details for one “party of interest” to the central organisation, being a person or an external organisation or their internal management units (departments, divisions, etc.) They parties may fulfil a variety of roles such as customers, suppliers, third-party contractors, etc. – refer to the associated Party Role class.

Associated with each party will be information on names, addresses, contact details and relationships. It would be commonly considered that this class “holds” name & address details. It is to be noted that many such details are to be held in separate but closely associated classes. For example, names are held separately to facilitate the recording of alias names at one point in time, plus name changes over time.

Where appropriate, information will also be held on recognised roles that a party may play.

This class has the following sub-classes:

· Person.

· Organisation.

Classification of the party’s type is usually applied to organisations e.g. an organisation might be typed as being a limited liability company, apartnership, a trust, a subsidiary, a department, a section, etc. Persons (a subclass of this Party class) are not expected to have extensive classification – they are just a people!

Associations

· Each Party may be classified by one Party Type.

· Each Party may be identified via the details recorded in one or more Party Identifiers.

· Each Party may fulfil one or more declared Party Role(s).

· Each Party may nominate its addresses and their usage via one or more Address Services.

· Each Party may be the first of two participants in one or more Party To Party Relationships with other parties.

· Each Party may be the second of two participants in one or more Party To Party Relationships with other parties.

· Each Party may be identified as a participant in an agreement via one or more Agreement Participations.

· Each Party may be nominated as the participant in an account via one or more Account Participations.

· Each Party may be assigned to a task via one or more Object To Task Assignments.

· Each Party may be responsible for managing the enumerations of one or more Classification Schemes.

Attributes

	Attribute Name
	Comments

	Effective Period
	For a person, this attribute could record dates of birth through to date of death. For an organisation it could record dates from incorporation / creation through to deregistration / dissolution.

10.41.1 Party / Organisation

Description

Organisation is a subclass of party. Each instance records one organisation (a company, a division within a company, a group of people such as a work team, etc.)

Most of the attributes of this class are held in associated classes such as Organisation Name, and Address.

Associations

· Each Organisation must contain one or more Organisation Names.

· Each Organisation may contain one or more Positions.

Attributes

	Attribute Name
	Comments

	(none yet identified)
	

10.41.2 Party / Person

Description

Person is a subclass of party. Each instance records one person of interest e.g. a person who plays the role of nominated contact at a customer’s site.

Most of the attributes of this class are held in associated classes such as Person Name, and Address.

Associations

· Each Organisation must contain one or more Person Names.

· Each Person may be assigned to as an incumbent for a position via one or more Position Assignments.

Attributes

	Attribute Name
	Comments

	Gender
	Most commonly “Male” or “Female” (but may have other values, including “Unknown”).

10.42 Party Identifier

Description

Each party may have one or several identifiers. Each instance in this class records one identifier for one party. Examples of party identifiers could include:

· An Australian Company Number (ACN) for an organisation

· A Tax File Number for an organisation or a person

· A person’s Drivers Licence or Passport number

· In some countries (but not Australia), a unique Social Security Number assigned to citizens

Sometimes role-based identifiers may be used (e.g. customer numbers or employee numbers), but an alternative modelling choice is to record these as attributes of the relevant subtypes of the Party Role class.

These will be unique within a given domain, but are not necessarily unique globally. For example, if driver’s licences are recorded as identifiers for people, they may not be unique across all states in Australia. It follows that the identifier value may have to be a composite string that includes the code for the data domain.
Associations

· Each Party Identifier must record details required to identify one Party.

Attributes

	Attribute Name
	Comments

	Party Identifier Type
	For example, “Driver’s Licence Number”, “Passport Number” or “Australian Company Number”.

	Party Identifier Value
	Textual display string describing one identifier for a party e.g. Driver’s Licence Number “ABC-12345”.

	Effective Period
	Period during which the party identifier is active.

10.43 Party Role

Description

Each party may potentially play one or more roles. For example, a person may be both a customer and an employee.

As noted earlier in this document, there are “declarative” roles (e.g. a party named Dan is declared to be an employee) and there are “contextual” roles (e.g. within the context of a certain phone call informing the switchboard of an incident, you observe that a Dan seems to be playing a “notifier” role – but this isn’t Dan’s full-time job).

This class is responsible for managing declarative roles.

The Party Role class has several subclasses. Some subclasses are supplied as examples of types of roles. It must be noted that some roles do not require any specialisation of their attributes and/or associations and hence may be treated as generic roles, with a party role type – see the associated Party Role Type class).

Associations

· Each Party Role must be classified by one Party Role Type.

· Each Party Role must be the fulfilment of a declared role for one Party.

· Each Party Role may be identified as a participant in an agreement via one or more Agreement Participations.

· Each Party Role may be nominated as a participant in an Account via one or more Account Participations.

· Each Party Role may be assigned to a task via one or more Object To Task Assignments.

Attributes

	Attribute Name
	Comments

	Party Role ID
	Identifier for a party in the declared role. For example, while a person may have their Party identifiers such as Passport Number and Drivers Licence Number, in the role of Employee, their party role identifier is expected to be an Employee Number.

Note: This is a generic placeholder for role-specific identifiers. An alternative is to model the identifiers within subclasses e.g. Employee Number in the Employee subclass, and Customer Number within the Customer subclass.

	Status
	Optional classification of the role’s status. For example, an employee’s status values might include Applicant, Active and Terminated.

	Effective Period
	Period during which the party role is active e.g. the period of employment for an employee.

10.43.1 Party Role / Customer
Description

This class is a subclass of Party Role. Each instance manages details for a party in the role of customer i.e. a party that is a purchaser of the company’s products and services.
Attributes

	Attribute Name
	Comments

	(none defined yet)
	

10.43.2 Role / Employee
Description

This class is a subclass of Role. Each instance manages details for a party in the role of an employee.

Attributes

	Attribute Name
	Comments

	Salary
	Annual salary

10.43.3 Role / Employer

Description

This class is a subclass of Role. Each instance manages details for a party in the role of employer.

Attributes

	Attribute Name
	Comments

	(none defined yet)
	

10.44 Party Role Type

Description

Each instance in this class describes a classification of roles. One level of classification is achieved via the subclassing of the Party Role class. This class provides for further classification, either of roles that have no need for subclassing (e.g. they have no specialised attributes), or as a finer-grained classification of a subclass (e.g. a classification of a Supplier into a role type of Manufacturer or Importer).

Associations

· Each Party Role Type may be the classification for one or more Party Roles.

· Each Party Role Type may be assigned to a task via one or more Object Type To Task Assignments.

· Each Party Role Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Party Role Types.

· Each Party Role Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Party Role Type.

Attributes

	Attribute Name
	Comments

	Party Role Type Code
	Brief code representing the classification e.g. “CUST” for Customer.

	Party Role Type Description
	Full textual description for the classification e.g. “Customer”.

10.45 Party To Party Relationship

Description

Each party may relate to one or many other parties. Examples of types of relationships may include:

· Organisational structures. For example, one holding company may be the parent for several subsidiaries. Similarly, each subsidiary may be made up of departments, sections, etc.

· Employment. For example, one organisation may have several employees which we wish to note as contact personnel.

· Marriage. For example, two people are in a marriage relationship.

Each instance of this class represents one relationship between a pair of parties, of a relationship type as classified by the associated Party To Party Relationship Type class.

Associations

· Each Party To Party Relationship must be classified by one Party To Party Relationship Type.

· Each Party To Party Relationship must nominate one Party as the first of two parties participating in the relationship.

· Each Party To Party Relationship must nominate one Party as the second of two parties participating in the relationship.

Attributes

	Attribute Name
	Comments

	Effective Period
	Period of the relationship. For an employment relationship, this would be the period of employment. For a succession relationship, this would start at the date of the merge or split, and may have no “to” date.

10.46 Party To Party Relationship Type

Description

Each instance in this class describes a classification of party to party relationships (“organisational structure”, “employment”, “marriage”, etc.)

Associations

· Each Party To Party Relationship Type may be the classification for one or more Party To Party Relationships.

Attributes

	Attribute Name
	Comments

	Party to Party Relationship Type Code
	Brief code representing the classification e.g. “EMP” for employment.

	Party to Party Relationship Type Description
	Full textual description for the classification e.g. “Employment”.

	Participant 1 Role
	E.g. “Employer”.

	Participant 2 Role
	E.g. “Employee”.

10.47 Party Type

Description

Each instance in this class defines one classification for Parties. The Party class has Person and Organisation as subclasses, but it is expected that the only “type” of Person will be “Person”! However, the Organisations are expected to have a rich hierarchy of types that might include:

· Companies (limited liability, partnerships, …)

· Internal units (divisions, sections, …) of companies
· Less formal groups of parties e.g. “Crews” formed to respond to an emergency, and “Households”

This class has a self-referencing association that enables a hierarchy of types. The Organisation class that is "typed" by entries in this class is itself a superclass that is also typed by its subclasses. It is suggested that this Party Type class manage all type definitions, and that the inheritance mechanism be used as a supplementary specification where static specialisation of attributes and/or associations is required.
Associations

· Each Party Type may be the classification for one or more Parties.

· Each Party Type may be assigned to a task via one or more Object Type To Task Assignments.

· Each Party Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Party Types.

· Each Party Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Party Type.

Attributes

	Attribute Name
	Comments

	Party Type Code
	Code representing the classification e.g. “LLC” for Limited Liability Corporation.

	Party Type Description
	Full textual description for the classification e.g. “Limited Liability Corporation”.

10.48 Person Given Name

Description

This class is contained within the Person Name class. It allows for zero, one or many given names to be defined for a person. Each instance holds one given name for a person.

Associations

· Each Person Given Name must be contained within one Person Name.

Attributes

	Attribute Name
	Comments

	Given Name
	e.g. “Jo”

	Sequence Number
	Value to record the sequence within a set of multiple given names (e.g. my first given name is Jo, my second is Chris …).

10.49 Person Name

Description

A person may have one or several names. For example, at one point in time they may have a formal name and a preferred name. Over time, they may have name changes.

Each instance holds one allowable name for a person.

Associations

· Each Person Name must be contained within one Person.

· Each Person Name may contain one or more Person Given Names.

Attributes

	Attribute Name
	Comments

	Person Name Type
	Classification of the person’s name type e.g. “birth”, “married”, “alias” (or even “stage” name).

	Salutation
	(Optional) Examples may include “Mr”, “Ms”, “Sir”. Can include concatenation of multiples e.g. “Prof. Sir”.

	Family Name
	Also known as surname. For example, “Smith”.

	Post Nominal
	(Optional) e.g. “MP”, “FRACS”. Can include concatenation of multiple values.

	Effective Period
	Period during which the name is active.

10.50 Position
Description

An organisation typically creates many positions for its staff and contractors.

It is a common practice to relate people via their positions. While in conversation we may say that “Alex works for Brook”, it is arguably more correct to say that the position filled by Alex reports to the position filled by Brook. Recording the management hierarchy via its positions typically provides greater stability. The incumbents of a position may change relatively frequently, but it might be reasonable to expect that the position relationships are relatively stable. These position interrelationships are maintained in the associated Position Hierarchy class.

Other organisations, and their positions within those organisations, can be more dynamic. For example, in an emergency incident a Crew (a type of Organisation) may be formed along with its positions, and then those positions can be filled even if only for a relatively short period of time.

Each instance of this class represents one position within an organisation.

Associations

· Each Position must be contained within one Organisation.

· Each Position may be the ‘senior’ position in one or more Position Hierarchies involving other positions.

· Each Position may be the ‘subordinate’ position in one or more Position Hierarchies involving other positions.

· Each Position may be filled by a person as an incumbent via one or more Position Assignments.

Attributes

	Attribute Name
	Comments

	Position Title
	Classification of the position’s type e.g. “CIO”.

	Effective Period
	Period during which the position is active.

10.51 Position Assignment

Description

Each Position will typically be filled by one (or maybe several) incumbents.
Conversely, each Person may be the incumbent in one or several Positions.

Each instance in this class identifies one Person who is assigned as the incumbent for one Position.

Associations

· Each Position Assignment must define a person as an incumbent in one Position.

· Each Position Assignment must identify a position with an incumbent as one Person.

Attributes

	Attribute Name
	Comments

	Incumbency Type
	Classification of the incumbency type e.g. “Acting in role”.

	Percent Allocation
	If the allocation of a resource to a position reflects a commitment of other than 100%, this attribute records the expected level. For example, two incumbents in a time-sharing arrangement might record a commitment of 50% each.

	Effective Period
	Period during which the incumbency is active.

10.52 Position Hierarchy

Description

Each position may have zero, one or several subordinate positions reporting to it.
Conversely, each position may the subordinate position to zero, one or several senior positions.
Each instance in this class represents the relationship between one senior position and one subordinate position.

It is a common practice to relate people via their positions. While in conversation we may say that “Alex works for Brook”, it is arguably more correct to say that the position filled by Alex reports to the position filled by Brook. Recording the management hierarchy via its positions typically provides greater stability. The incumbents of a position may change relatively frequently, but it might be reasonable to expect that the position relationships are relatively stable. This class manages the data for these position interrelationships.

Associations

· Each Position Hierarchy must nominate one ‘senior’ Position as the first of two positions participating in the hierarchy.

· Each Position Hierarchy must nominate one ‘subordinate’ Position as the second of two positions participating in the hierarchy.

Attributes

	Attribute Name
	Comments

	Effective Period
	Period during which the hierarchical relationship is active.

10.53 Product Item
Description

Each instance in this class represents one product instance as it relates to one customer e.g. Alex’s Acme “U-Beaut” model mobile phone with the serial number 1111. Brook’s Acme “U-Beaut” model mobile phone with the serial number 2222 is a different product item, even though both product items share exactly the same product type (see the associated Product Type class) i.e. they both are the same make (Acme) and model (U-Beaut).

A product item can be made up from one or more tangible goods items and/or one or more intangible services items and/or one or more other product items. For example, an Acme “U-Beaut” mobile phone product item as owned by Alex may contain the mobile handset itself as one goods item, plus a battery charger as another. It may also contain a missed-call answering facility as one services item, plus 12 months international roaming as another. Further, this product item may additionally contain a carrying case which is itself another product that could have been bought separately but which was bought as a bundle.
Associations

· Each Product Item must be contained within one Product Type.

· Each Product Item may contain one or more Goods Items.

· Each Product Item may contain one or more Services Items.

· Each Product Item may contain one or more other Product Items e.g. an Acme “U-Beaut” product item may contain a “Carrying Case” product item.

· Each Product Item may be contained within one other Product Item e.g. an Acme “U-Beaut” product item may be contained within a “New Home Owner Starter Pack” product item.

Attributes

	Attribute Name
	Comments

	Product ID
	Unique identifier for the product item e.g. its serial number. (Optional)

10.54 Product Goods Component

Description

Each product type may contain zero, one or several goods types. For example, the Acme “U-Beaut” mobile phone product type may contain the mobile handset itself as one goods type, plus a battery charger as another.

Conversely, each goods type may be contained in zero, one or several product types. For example, a particular type of battery charger (a goods type) may be contained in the Acme “U-Beaut” mobile phone product type, plus the Acme “Eco” mobile phone product type.

Each instance in this class records the containment of one goods type in one product type.

Associations

· Each Product Goods Component must reference the Product Type that contains the goods type nominated in the other association for this class.

· Each Product Goods Component must reference the Goods Type that is contained within the product type nominated in the other association for this class.

Attributes

	Attribute Name
	Comments

	Quantity
	The number of goods types contained in the product type. For example, a particular type of mobile phone may have two spare batteries included. [Default = 1]

10.55 Product Services Component

Description

Each product type may contain zero, one or several services types. For example, the Acme “U-Beaut” mobile phone product type may contain a missed-call answering facility as one services type, plus 12 months international roaming as another.

Conversely, each services type may be contained in zero, one or several product types. For example, a particular type of 12 months international roaming (a services type) may be contained in the Acme “U-Beaut” mobile phone product type, plus the Acme “Eco” mobile phone product type.

Each instance in this class records the containment of one services type in one product type.

Associations

· Each Product Services Component must reference the Product Type that contains the services type nominated in the other association for this class.

· Each Product Services Component must reference the Services Type that is contained within the product type nominated in the other association for this class.

Attributes

	Attribute Name
	Comments

	Quantity
	The number of services types contained in the product type. For example, a particular type of mobile phone may have a double pack of 12-month international roaming services included. [Default = 1]

10.56 Product Subproduct Component

Description

Each product type may contain zero, one or several additional product types as sub-product types. For example, the Acme “U-Beaut” mobile phone product type may contain a carrying case which is itself another product type that could have appeared separately as well as appearing as part of this product type’s bundle. It may also contain a T-shirt with Acme’s logo.

Conversely, each product type may be contained in zero, one or several “bundled” product types. For example, a particular type of carrying case (a product type) may be contained in the Acme “U-Beaut” mobile phone product type, plus the Acme “Eco” mobile phone product type.

Each instance in this class records the containment of one (sub-)product type in one (bundle) product type.

Associations

· Each Product Subproduct Component must reference the bundled Product Type that contains the component product type nominated in the other association for this class.

· Each Product Subproduct Component must reference the component Product Type that is contained within the bundled product type nominated in the other association for this class.

Attributes

	Attribute Name
	Comments

	Quantity
	The number of sub-product types contained in the bundle product type. For example, a particular type of Acme T-short may have two of these included in the bundle product type. [Default = 1]

10.57 Product Type
Description

Each instance in this class represents one of the company’s product types as clients might expect to find in the company’s product catalogue. For example, one product type entry may be for the Acme “U-Beaut” model mobile phone. It is to be noted that individual purchases of this type of product, by individual customers, are recorded in the Product Item class.

A product type can be made up from one or more tangible goods types and/or one or more intangible services types and/or one or more other product types. For example, the Acme “U-Beaut” mobile phone product type may contain the mobile handset itself as one goods type, plus a battery charger as another. It may also contain a missed-call answering facility as one services type, plus 12 months international roaming as another. Further, this product type may additionally contain a carrying case which is itself another product type that could appear separately as well as appearing as part of this product type’s bundle.

Associations

· Each Product Type may contain one or more Product Items.

· Each Product Type may contain one or more Product Goods Components (which in turn reference their Goods Type).

· Each Product Type may contain one or more Product Services Components (which in turn reference their Services Type).

· Each Product Type may act as the bundled product type, containing one or more Product Subproduct Components (which in turn reference their own Product Types which in this context are component sub-product types).

· Each Product Type may act as a component sub-product type, contained within one or more Product Subproduct Components (which in turn reference their own Product Types which in this context are bundled product types).

Attributes

	Attribute Name
	Comments

	Product Code
	Reference code used to identify a type of product in the product catalogue.

	Product Name
	For example, “Acme U-Beaut mobile phone”.

	Recommended Retail Price
	Standard catalogue price.

	Effective Period
	Period during which this type of product is available for sale.

10.58 Resource
Description

Each instance in this class represents a physical resource such as a vehicle (a car, truck, trailer …), a piece of plant or equipment (a computer, an office desk …), a consumable (fuel, stationery …), and so on.

The class model diagram presented in this documentation is based on a wildfire emergency response scenario, with several subclasses as examples. Note that the sample subclasses portrayed in the Class Diagram are not documented in this Data Dictionary.

Typically, the Resource class is subclassed when there is a requirement for specific attributes, associations and/or operations. It must be noted that some resources do not require any specialisation and hence may be treated using the generic resource class (with a resource type – see the associated Resource Type class).
Associations

· Each Resource must be classified by one Resource Type.

· Each Resource may be assigned to a task via one or more Object To Task Assignments.

Attributes

	Attribute Name
	Comments

	Resource ID
	Optional unique identifier (e.g. a serial number) for the resource.

	Resource Name
	Optional brief textual description for the resource.

	Effective Period
	Period during which the resource is active.

10.59 Resource Type
Description

Each instance in this class defines one classification for Resources. For example, types of resources may include:

· Vehicle, itself sub-classified as Truck, Car, Trailer and so on (with any of these sub-classifications themselves being further sub-classified).

· Plant and equipment e.g. generators, computers, and pumps.

· Consumables e.g. fuel, stationery.

As introduced in the above examples, this class has a self-referencing association that enables a hierarchy of types. The Resource class that is "typed" by entries in this class is a superclass that is also typed by its subclasses. It is suggested that this Resource Type class manage all type definitions, and that the inheritance mechanism against the Resource class be used as a supplementary specification where static specialisation of attributes and/or associations is required.
Associations

· Each Resource Type may be the classification for one or more Resources.

· Each Resource Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Resource Types.

· Each Resource Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Resource Type.

· Each Resource Type may be assigned to a task via one or more Object Type To Task Assignments.

Attributes

	Attribute Name
	Comments

	Resource Type Code
	Code representing the classification e.g. “GEN” for Generator.

	Resource Type Description
	Full textual description for the classification e.g. “240 volt generator”.

10.60 Schedule Entry Recurrence Specification

Description

This class is used to define recurring tasks entries, for example a task that occurs on the "First Tuesday each month, starting next January, and going until June".

Full details of this structure are not included here, but may be inferred from similar functionality in desktop or smartphone applications.

Associations

· Each Schedule Entry Recurrence Specification must define the rules for repeated execution of one Task.

Attributes

(Although the class data structure is not fully analysed, some indicative candidate attributes are defined below.)

	Attribute Name
	Comments

	Repeat Frequency
	The frequency of repeating the task (daily, weekly, …).

	Effective Period
	The start and end dates for the period of repeats.

10.61 Services Item

Description

Each instance in this class represents one item of intangible services as it relates to one customer e.g. a missed-call answering facility supplied as a component of the Acme “U-Beaut” model mobile phone bought by Alex.

Associations

· Each Services Item may be contained within one Product Item.

Attributes

	Attribute Name
	Comments

	(none specified yet)
	

10.62 Services Type

Description

Each instance in this class represents one type of intangible services that may be included in one or more product types. For example, a particular type of missed-call answering facility may be included in one or more product types, with the relationship between this services type, and the product types that contain it, recorded via the Product Services Component class.

Associations

· Each Services Type may act as a component in product types, as defined by one or more Product Services Components.

Attributes

	Attribute Name
	Comments

	(none specified yet)
	

10.63 Task

Description

A task represents a job to be performed. A task can represent a small unit of work e.g. a simple checklist item (“make sure that someone rings the client back to notify them of a delay”, “perform a credit check on the prospect” …). A task can also represent a large and complex unit of work e.g. a major project or even an entire programme of work. Each instance of this class defines some work that is required to be done and/or has been actually performed.

The task class has two subclasses, namely the Specific Task class and the Template Task class.

· Template tasks define an overall profile of tasks that occur frequently. For example, it would be reasonable to expect that a template would be defined that describes a profile for day-to-day responsibilities such as responding to a product enquiry. Templates have a profile, but are not related to any calendar dates / times, and may describe generic deployment of types of resources, but will not typically nominate specific resources.

· Specific tasks are instances of tasks that have been “attached” to a calendar. Whereas there might be a generic template for responding to a product enquiry, each planned &/or actual complaint resolution would be one specific task (“At 9:17 am today we commenced processing a product enquiry initiated by Dan Daniels”).

As part of a business process, a Template Task can be identified as being applicable, and then cloned to create a Specific Task.
Tasks can be arranged in CPM, or PERT, dependency networks – refer to the Task Dependency class for details.

Associations

· Each Task must be classified by one Task Type.

· Each Task may have rules for repeated execution defined in one or more Schedule Entry Recurrence Specifications.

· Each Task may be the predecessor task in one or more Tasks Dependencies that in turn identify successor tasks.

· Each Task may be the successor task in one or more Tasks Dependencies that in turn identify predecessor tasks.

· Each Task may have defined for its use one or more Object To Task Assignments (which in turn identify some assigned specific ‘thing’, namely either a party or party role or resource).

· Each Task may have defined for its use one or more Object Type To Task Assignments (which in turn identify some assigned ‘thing type’, namely either a party type or party role type or resource type).

Attributes

	Attribute Name
	Comments

	Task ID
	Unique reference assigned to a task.

	Task Name
	Optional brief textual description of the task.

	Task Description
	Optional full textual description of the work task.

	Task Comment
	Optional additional comments relating to the task.

	Duration UOM
	Code defining the unit-of-measure for durations e.g. “Hours”.

10.63.1 Task / Specific Task

Description

Specific task is a subclass of task. Each instance of this class represents a task that is linked to a specific calendar date and time (in contrast to a template task that defines the “shape” for a task profile but does not relate to any specific date and time). Tasks within the context of this model could include:

· An overall task such as case management of a billing enquiry from Jones.

· A sub-task of the overarching case management above e.g. issue of a credit. [See the notes immediately below for tasks containing subtasks.]
Tasks may contain other tasks. For example, the task to create a new customer might:

· Contain several tasks such as performing a credit check and assigning an account manager.

· Be itself contained in a larger task such as running a marketing campaign which resulted in the creation of this new customer.

These containment relationships are represented on the class diagram as a “composition” association.

Specific tasks may represent planned activities and/or actual activities – refer to the subclasses of this class.

Associations

· Each Specific Task may have its scheduling possibilities defined by one Calendar.

· Each Specific Task may be composed of one or more component Specific Tasks.

· Each Specific Task may be a component within one composite Specific Task.

· Each Specific Task may be cloned from one Template Task.

· Each Specific Task may have its initiation for work triggered by one Event.

· The commencement or completion of each Specific Task may be treated as a noteworthy event and hence result in the creation of one or more Events to record that noteworthy event.

Attributes

	Attribute Name
	Comments

	(none yet identified)
	(Refer to the subclasses)

10.63.1.1 Task / Specific Task / Actual Task

Description

Actual task is a subclass of specific task. Each instance of this class represents an actual task that has at least commenced if not completed.

Note that an actual task may have no association with planned tasks (it just got done), or it may be the fulfilment of one or many planned tasks.

Associations

· Each Actual Task may be the fulfilment of one or more Planned Tasks.

Attributes

	Attribute Name
	Comments

	Actual Start Date & Time
	Date and time marking the actual start of the task.

	Actual Finish Date & Time
	Date and time marking the actual end of the task. (Null if not yet completed.)

10.63.1.2 Task / Specific Task / Planned Task

Description

Planned task is a subclass of specific task. Each instance of this class represents one planned (or “intended”) task.

Note that a planned task may have no association with actual tasks (it has been planned but no-one has started actual work), or it may be the trigger for initiation of one or many actual tasks.

Associations

· Each Planned Task may be fulfilled by the performance of one or more Actual Tasks.

Attributes

	Attribute Name
	Comments

	Planned Duration Metric
	Expected duration measurement (e.g. “5”), expressed in the duration unit of measure inherited from the Task class (e.g. “Days”).

	Planned Early Start Date & Time
	The earliest expected start date and time of the task.

	Planned Early Finish Date & Time
	The earliest expected end date and time of the task. [Derivable from early start + duration]

	Planned Late Start Date & Time
	The latest expected start date and time of the task.

	Planned Late Finish Date & Time
	The latest expected end date and time of the task. [Derivable from late start + duration]

10.63.2 Task / Template Task

Description

Template task is a subclass of task. Each instance of this class defines the “shape” for a task profile but does not relate to any specific date and time (in contrast to a specific task that is linked to a specific calendar date and time).

A template task may contain templates of many smaller tasks. For example, the “Create a customer” template task may contain the templates for certain jobs such as performing a credit check and assigning an account manager. Conversely, template tasks can be assembled to create larger units. The credit check template task may appear as a subtask in many customer-related tasks. These possible relationships are defined via a many-to-many “composition” association relationship.

Associations

· Each Template Task may be composed of one or more component Template Tasks.

· Each Template Task may be a component within one or more composite Template Tasks.

· Each Template Task may be cloned to create one or more Specific Tasks.

Attributes

	Attribute Name
	Comments

	Planned Duration
	Estimated duration of the task, expressed in the unit-of-measure defined in the Task superclass.

10.64 Task Dependency

Description

Tasks may be linked in a Program Evaluation Review Technique (PERT), or Critical Path Method (CPM), network. For example, some tasks cannot start until others finish.

Each task may have one or several predecessors.
Conversely, each task may have one or several successors.
Each instance of this class represents one such dependency between a predecessor and its successor.

Associations

· Each Task Dependency must nominate one Task as the predecessor task participating in a dependency with one other successor task.

· Each Task Dependency must nominate one Task as the successor task participating in a dependency with one other predecessor task.

Attributes

	Attribute Name
	Comments

	Dependency Type
	Typically “FS” (finish-to-start), but may be “FF”, “SF”, or “SS”.

	Lag
	Gap between two activities with a dependency e.g. Task 2 is to start when Task 1 finishes, but with a delay of 4 days. (Note that the lag can be negative e.g. Task 2 is to start 2 days before the expected finish of Task 1.)

	Guard Condition
	Boolean condition on the commencement of the successor task.

10.65 Task Type
Description

Each instance in this class defines one classification for tasks. For example, types of tasks may include:

· Marketing campaign.

· Case management for a activating a new customer, or managing a customer complaint.

· Customer credit check.

· Training activities (e.g. running a course or employee induction session).

This class has a self-referencing association that enables a hierarchy of types. The Task class that is "typed" by entries in this class is itself a superclass that is also typed by its subclasses. It is suggested that this class manage all type definitions, and that the inheritance mechanism be used as a supplementary specification where static specialisation of attributes and/or associations is required.
Associations

· Each Task Type may be the classification for one or more Tasks.

· Each Task Type may be the coarse-grained ‘parent’ of one or more finer-grained ‘child’ Task Types.

· Each Task Type may be the fine-grained ‘child’ of one coarse-grained ‘parent’ Task Type.

Attributes

	Attribute Name
	Comments

	Task Type Code
	Code representing the classification e.g. “CCHK” for Credit Check.

	Task Type Description
	Full textual description for the classification e.g. “Credit Check”.

